Skip to content

feat: support scatter.value and scatter.src #1252

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Aug 15, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 21 additions & 0 deletions core/conversion/converters/converter_util.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -335,6 +335,27 @@ nvinfer1::ITensor* get_slice_size(
return size_itensor;
}

nvinfer1::ITensor* scalar_to_tensor(ConversionCtx* ctx, at::Scalar s) {
nvinfer1::ITensor* out;
if (s.isIntegral(false)) {
auto s_int = s.to<int64_t>();
auto s_t = torch::tensor({s_int}).to(at::kInt);
out = tensor_to_const(ctx, s_t);
} else if (s.isBoolean()) {
auto s_bool = s.to<bool>();
auto s_t = torch::tensor({s_bool}).to(at::kBool);
out = tensor_to_const(ctx, s_t);
} else if (s.isFloatingPoint()) {
auto other_float = s.to<float>();
auto s_t = torch::tensor({other_float});
out = tensor_to_const(ctx, s_t);
} else {
out = nullptr;
TORCHTRT_THROW_ERROR("Unsupported data type for scalar. Found: (" << s.type() << ")");
}
return out;
}

} // namespace converters
} // namespace conversion
} // namespace core
Expand Down
2 changes: 2 additions & 0 deletions core/conversion/converters/converter_util.h
Original file line number Diff line number Diff line change
Expand Up @@ -80,6 +80,8 @@ nvinfer1::ITensor* get_slice_size(
int nbdims,
std::string const& name);

nvinfer1::ITensor* scalar_to_tensor(ConversionCtx* ctx, at::Scalar s);

} // namespace converters
} // namespace conversion
} // namespace core
Expand Down
21 changes: 1 addition & 20 deletions core/conversion/converters/impl/element_wise.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -25,26 +25,7 @@ nvinfer1::ITensor* clamp_util(
return clamp_layer_out;
}

nvinfer1::ITensor* scalar_to_tensor(ConversionCtx* ctx, at::Scalar s) {
nvinfer1::ITensor* out;
if (s.isIntegral(false)) {
auto s_int = s.to<int64_t>();
auto s_t = torch::tensor({s_int}).to(at::kInt);
out = tensor_to_const(ctx, s_t);
} else if (s.isBoolean()) {
auto s_bool = s.to<bool>();
auto s_t = torch::tensor({s_bool}).to(at::kBool);
out = tensor_to_const(ctx, s_t);
} else if (s.isFloatingPoint()) {
auto other_float = s.to<float>();
auto s_t = torch::tensor({other_float});
out = tensor_to_const(ctx, s_t);
} else {
out = nullptr;
TORCHTRT_THROW_ERROR("Unsupported data type for scalar. Found: (" << s.type() << ")");
}
return out;
}


auto element_wise_registrations TORCHTRT_UNUSED =
RegisterNodeConversionPatterns()
Expand Down
47 changes: 47 additions & 0 deletions core/conversion/converters/impl/select.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -464,6 +464,53 @@ auto select_registrations TORCHTRT_UNUSED =
auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], new_layer->getOutput(0));
LOG_DEBUG("Output shape: " << out_tensor->getDimensions());
return true;
}})
.pattern(
{"aten::scatter.value(Tensor self, int dim, Tensor index, Scalar value) -> (Tensor)",
[](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
auto self = args[0].ITensorOrFreeze(ctx);
int dim = args[1].unwrapToInt();
auto index = args[2].ITensorOrFreeze(ctx);
auto index_dim = index->getDimensions();
std::vector<int64_t> dim_vec;
for (int i = 0; i < index_dim.nbDims; i++) {
dim_vec.push_back(index_dim.d[i]);
}
auto value = args[3].unwrapToScalar() * torch::ones(dim_vec);
auto value_tensor = tensor_to_const(ctx, value, "");
if (self->getType() != value_tensor->getType()) {
value_tensor = castITensor(ctx, value_tensor, self->getType());
}

auto layer = ctx->net->addScatter(*self, *index, *value_tensor, nvinfer1::ScatterMode::kELEMENT);
layer->setAxis(dim);

TORCHTRT_CHECK(layer, "Unable to create layer for aten::scatter.value");

layer->setName(util::node_info(n).c_str());

auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], layer->getOutput(0));
LOG_DEBUG("Output shape: " << out_tensor->getDimensions());
return true;
}})
.pattern(
{"aten::scatter.src(Tensor self, int dim, Tensor index, Tensor src) -> (Tensor)",
[](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
auto self = args[0].ITensorOrFreeze(ctx);
int dim = args[1].unwrapToInt();
auto index = args[2].ITensorOrFreeze(ctx);
auto src = args[3].ITensorOrFreeze(ctx);

auto layer = ctx->net->addScatter(*self, *index, *src, nvinfer1::ScatterMode::kELEMENT);
layer->setAxis(dim);

TORCHTRT_CHECK(layer, "Unable to create layer for aten::scatter.src");

layer->setName(util::node_info(n).c_str());

auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], layer->getOutput(0));
LOG_DEBUG("Output shape: " << out_tensor->getDimensions());
return true;
}});

} // namespace
Expand Down
18 changes: 14 additions & 4 deletions core/lowering/passes/op_aliasing.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -16,15 +16,25 @@ void AliasOperators(std::shared_ptr<torch::jit::Graph>& graph) {
graph(%s, %o):
%1 : Tensor = aten::div(%s, %o)
return (%1))IR";
;

// TODO
// complete other element wise pass

torch::jit::SubgraphRewriter true_divide_to_div;
true_divide_to_div.RegisterRewritePattern(true_divide_pattern, div_pattern);
true_divide_to_div.runOnGraph(graph);
LOG_GRAPH("Post map true_divide -> div: " << *graph);

std::string scatter_sub_pattern = R"IR(
graph(%data, %dim, %index, %value):
%o : Tensor = aten::scatter_(%data, %dim, %index, %value)
return (%o))IR";
std::string scatter_pattern = R"IR(
graph(%data, %dim, %index, %value):
%o : Tensor = aten::scatter(%data, %dim, %index, %value)
return (%o))IR";

torch::jit::SubgraphRewriter rewrite_scatter;
rewrite_scatter.RegisterRewritePattern(scatter_sub_pattern, scatter_pattern);
rewrite_scatter.runOnGraph(graph);
LOG_GRAPH("Post map scatter_ -> scatter: " << *graph);
}

} // namespace passes
Expand Down
73 changes: 73 additions & 0 deletions tests/core/conversion/converters/test_select.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -855,3 +855,76 @@ TEST(Converters, ATenUnbindNegativeAxisConvertsCorrectly) {
ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[i], trt, 2e-6));
}
}

TEST(Converters, ScatterValueConvertsCorrectly) {
const auto graph = R"IR(
graph(%data : Tensor,
%index.1 : Tensor):
%value : int = prim::Constant[value=100]()
%dim : int = prim::Constant[value=1]()
%5 : NoneType = prim::Constant()
%6 : bool = prim::Constant[value=0]()
%7 : int = prim::Constant[value=4]()
%index : Tensor = aten::to(%index.1, %7, %6, %6, %5)
%10 : Tensor = aten::scatter(%data, %dim, %index, %value)
return (%10))IR";

auto g = std::make_shared<torch::jit::Graph>();

torch::jit::parseIR(graph, g.get());

auto index = at::randint(0, 5, {2, 2}, {at::kCUDA});
auto data = at::randn({5, 5}, {at::kCUDA});

auto jit_index = at::clone(index);
auto jit_data = at::clone(data);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_data, jit_index});

auto trt_index = at::clone(index);
auto trt_data = at::clone(data);
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {trt_data, trt_index});

for (size_t i = 0; i < jit_results.size(); i++) {
auto trt = trt_results[i].reshape(jit_results[i].sizes());
ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[i], trt, 2e-6));
}
}

TEST(Converters, ScatterSrcConvertsCorrectly) {
const auto graph = R"IR(
graph(%data : Tensor,
%src : Tensor,
%index.1 : Tensor):
%dim : int = prim::Constant[value=1]()
%5 : NoneType = prim::Constant()
%6 : bool = prim::Constant[value=0]()
%7 : int = prim::Constant[value=4]()
%index : Tensor = aten::to(%index.1, %7, %6, %6, %5)
%10 : Tensor = aten::scatter(%data, %dim, %index, %src)
return (%10))IR";

auto g = std::make_shared<torch::jit::Graph>();

torch::jit::parseIR(graph, g.get());

auto index = at::randint(0, 4, {2, 2}, {at::kCUDA});
auto data = at::randn({5, 5}, {at::kCUDA});
auto src = at::randn({2, 2}, {at::kCUDA});

auto jit_index = at::clone(index);
auto jit_data = at::clone(data);
auto jit_src = at::clone(src);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_data, jit_src, jit_index});

auto trt_index = at::clone(index);
auto trt_data = at::clone(data);
auto trt_src = at::clone(src);
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {trt_data, trt_src, trt_index});

for (size_t i = 0; i < jit_results.size(); i++) {
auto trt = trt_results[i].reshape(jit_results[i].sizes());
ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[i], trt, 2e-6));
}
}