Skip to content

[FX] Changes done internally at Facebook #1625

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jan 31, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions .circleci/config.yml
Original file line number Diff line number Diff line change
Expand Up @@ -263,7 +263,7 @@ commands:
parameters:
torch-build:
type: string
default: "2.0.0.dev20230120+cu117"
default: "2.0.0.dev20230129+cu117"
torch-build-index:
type: string
default: "https://download.pytorch.org/whl/nightly/cu117"
Expand Down Expand Up @@ -1026,7 +1026,7 @@ parameters:
# Nightly platform config
torch-build:
type: string
default: "2.0.0.dev20230120+cu117"
default: "2.0.0.dev20230129+cu117"
torch-build-index:
type: string
default: "https://download.pytorch.org/whl/nightly/cu117"
Expand Down
135 changes: 128 additions & 7 deletions py/torch_tensorrt/fx/converters/aten_ops_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -298,8 +298,6 @@ def aten_ops_sub(
return acc_ops_converters.acc_ops_sub(network, target, None, kwargs_new, name)


@tensorrt_converter(torch.ops.aten._unsafe_view.default)
@tensorrt_converter(torch.ops.aten._reshape_alias.default)
@tensorrt_converter(torch.ops.aten.view.default)
def aten_ops_reshape(
network: TRTNetwork,
Expand All @@ -308,11 +306,33 @@ def aten_ops_reshape(
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
kwargs_new = {
"input": args[0],
"acc_out_ty": acc_utils.build_raw_tensor_meta(shape=args[1]),
}
return acc_ops_converters.acc_ops_reshape(network, target, None, kwargs_new, name)
input_val = args[0]
# for case where input_val is TRTensor
input_val = get_trt_tensor(network, input_val, f"{name}_input_val")
shape = args[1]

layer = network.add_shuffle(input_val)

if all(isinstance(s, int) for s in shape):
layer.reshape_dims = tuple(shape)
else:
# Convert all the dimensions to trt Tensors.
trt_shape = []

for i, s in enumerate(shape):
if isinstance(s, TRTTensor):
trt_shape.append(s)
else:
a = get_trt_tensor(network, s, f"{name}_{i}")
trt_shape.append(a)

shape_layer = network.add_concatenation(inputs=trt_shape)
shape_layer.axis = 0
shape_layer.name = f"{name}_output_shape"
layer.set_input(1, shape_layer.get_output(0))

set_layer_name(layer, target, name)
return layer.get_output(0)


@tensorrt_converter(torch.ops.aten.cat.default)
Expand Down Expand Up @@ -345,3 +365,104 @@ def aten_ops_expand(
return acc_ops_converters.acc_ops_expand_tensor(
network, target, None, kwargs_new, name
)


@tensorrt_converter(operator.floordiv)
def aten_ops_operator_floordiv(
network: TRTNetwork,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
kwargs_new = {
"input": args[0],
"other": args[1],
}
return acc_ops_converters.acc_ops_floor_div(network, target, None, kwargs_new, name)


@tensorrt_converter(operator.mul)
def aten_ops_operator_mul(
network: TRTNetwork,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
kwargs_new = {
"input": args[0],
"other": args[1],
}
return acc_ops_converters.acc_ops_mul(network, target, None, kwargs_new, name)


@tensorrt_converter(operator.add)
def aten_ops_operator_add(
network: TRTNetwork,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
kwargs_new = {
"input": args[0],
"other": args[1],
}
return acc_ops_converters.acc_ops_add(network, target, None, kwargs_new, name)


@tensorrt_converter(operator.sub)
def aten_ops_operator_sub(
network: TRTNetwork,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
kwargs_new = {
"input": args[0],
"other": args[1],
}
return acc_ops_converters.acc_ops_sub(network, target, None, kwargs_new, name)


@tensorrt_converter(torch.ops.aten.sym_numel)
def aten_ops_sym_numel(
network: TRTNetwork,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
shape_layer = network.add_shape(args[0])
set_layer_name(shape_layer, target, "_shape_layer")
reduce_layer = network.add_reduce(
shape_layer.get_output(0),
trt.ReduceOperation.PROD,
axes=get_axes_for_reduce_op(0, False),
keep_dims=True,
)
set_layer_name(reduce_layer, target, "_reduce_layer")
return reduce_layer.get_output(0)


@tensorrt_converter(torch.ops.aten.sym_size)
def aten_ops_sym_size(
network: TRTNetwork,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
shape_layer = network.add_shape(args[0])
ind = args[1]
set_layer_name(shape_layer, target, "_shape_layer")
slice_layer = network.add_slice(
input=shape_layer.get_output(0),
start=[ind],
shape=[1],
stride=[1],
)
set_layer_name(slice_layer, target, "_slice_layer")
return slice_layer.get_output(0)
3 changes: 2 additions & 1 deletion py/torch_tensorrt/fx/converters/convolution.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,9 @@
# @manual=//deeplearning/trt/python:py_tensorrt
import logging

import numpy as np
import tensorrt as trt
import torch
import logging

from ..converter_registry import tensorrt_converter

Expand Down
16 changes: 5 additions & 11 deletions py/torch_tensorrt/fx/lower.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
import torch
import torch.fx as fx
import torch.nn as nn
import torch_tensorrt.fx.tracer.dispatch_tracer.aten_tracer as aten_tracer
from torch.fx.passes.splitter_base import SplitResult

from .fx2trt import TRTInterpreter, TRTInterpreterResult
Expand All @@ -18,8 +19,7 @@

from .tracer.acc_tracer import acc_tracer
from .trt_module import TRTModule
from .utils import LowerPrecision, proxytensor_trace

from .utils import LowerPrecision

logger = logging.getLogger(__name__)

Expand Down Expand Up @@ -259,7 +259,9 @@ def create(
return cls(
lower_pass_manager_builder=LowerPassManagerBuilder(
lower_setting=lower_setting,
trace_func=lambda module, inputs: proxytensor_trace(module, inputs),
trace_func=lambda module, inputs: aten_tracer.opt_trace(
module, inputs
),
split_func=split_func,
lower_func=default_lower_pass(interpreter_builder),
)
Expand Down Expand Up @@ -308,14 +310,6 @@ def do_lower(module: nn.Module, inputs: Input) -> nn.Module:
pm = self.lower_pass_manager_builder.build_trt_lower_pipeline(
inputs, additional_inputs
)
if lower_setting.is_aten:
pm = self.lower_pass_manager_builder.build_aten2trt_lower_pipeline(
inputs, additional_inputs
)
else:
pm = self.lower_pass_manager_builder.build_trt_lower_pipeline(
inputs, additional_inputs
)
lower_result = pm(module)
return lower_result

Expand Down
28 changes: 26 additions & 2 deletions py/torch_tensorrt/fx/passes/lower_pass_manager_builder.py
Original file line number Diff line number Diff line change
Expand Up @@ -127,6 +127,31 @@ def graph_optimization_pass(self) -> PassManager:

return PassManager.build_from_passlist(passes)

def graph_optimization_pass_aten(self) -> PassManager:
passes = []

for p in self.lower_setting.customized_fuse_pass.passes:
passes.append(wrapper(p, self._input))
for p in self.lower_setting.lower_basic_fuse_pass.passes:
passes.append(wrapper(p, self._input))
# TODO fix this pass for aten graph
# if (
# hasattr(self.lower_setting, "lower_precision")
# and self.lower_setting.lower_precision is LowerPrecision.FP16
# ) or (
# hasattr(self.lower_setting, "precision")
# and self.lower_setting.precision is LowerPrecision.FP16
# ):
# passes.append(wrapper(fix_clamp_numerical_limits_to_fp16, self._input))

passes.append(
inplace_wrapper(lambda m: FUSE_PASSES_POST_OBSERVER.observe(m, self._input))
)
# TODO we most likely do not need it for aten
# passes.append(fix_reshape_batch_dim)

return PassManager.build_from_passlist(passes)

def _split_pass(self) -> PassManager:
passes = [
partial(
Expand Down Expand Up @@ -259,8 +284,7 @@ def build_aten2trt_lower_pipeline(
passes.append(
wrapper(self._trace_func, self._input),
)
passes.append(self._default_replace_mutable_op_pass())
passes.append(self.graph_optimization_pass())
passes.append(self.graph_optimization_pass_aten())
passes.append(self._split_pass())
passes.append(self._trt_lower_pass())

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@ def forward(self, x):
# param("ceil_mode", 1, ceil_mode=True),
]
)
@unittest.skip("PT tracer issue")
@unittest.skip("PT2 tracer issue")
def test_max_pool3d(
self,
test_name,
Expand All @@ -95,6 +95,7 @@ def forward(self, x):
inputs = [torch.randn(1, 3, 32, 32, 32)]
self.run_test(TestModule(), inputs, expected_ops={})

@unittest.skip("PT2 tracer issue")
def test_max_pool3d_with_dynamic_shape(self):
class TestModule(torch.nn.Module):
def __init__(self):
Expand All @@ -118,7 +119,7 @@ def forward(self, x):
@parameterized.expand(
[
("default", 1),
param("stride", 2, stride=()),
# param("stride", 2, stride=()), #PT2 tracer issue
]
)
def test_stride_none_max_pool2d(
Expand Down Expand Up @@ -147,7 +148,7 @@ def forward(self, x):
param("stride", 2, stride=()),
]
)
@unittest.skip("PT tracer issue")
@unittest.skip("PT2 tracer issue")
def test_stride_none_max_pool3d(
self,
test_name,
Expand Down Expand Up @@ -209,6 +210,7 @@ def forward(self, x):
param("stride", 2, stride=()),
]
)
@unittest.skip("PT2 tracer issue")
def test_stride_none_max_pool3d_with_dynamic_shape(
self,
test_name,
Expand Down
Loading