Skip to content

fix/feat: Add Dynamo-only converter registry #1944

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Jul 21, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 5 additions & 1 deletion py/torch_tensorrt/dynamo/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,5 +3,9 @@

if version.parse(sanitized_torch_version()) >= version.parse("2.1.dev"):
from ._settings import *
from .compile import compile
from .aten_tracer import trace
from .converter_registry import (
DYNAMO_CONVERTERS,
dynamo_tensorrt_converter,
)
from .compile import compile
30 changes: 30 additions & 0 deletions py/torch_tensorrt/dynamo/conversion/converter_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
import torch


def dynamic_unsupported(node: torch.fx.Node) -> bool:
# Validate that none of the inputs to the node have Dynamic shapes
assert isinstance(
node, torch.fx.Node
), "Inputs to validator functions must be FX Nodes"

# Check node value itself
if getattr(node.meta["val"], "_has_symbolic_sizes_strides", False):
return False

# Check node arguments individually
if any(
getattr(arg.meta["val"], "_has_symbolic_sizes_strides", False)
for arg in node.args
if isinstance(arg, torch.fx.Node)
):
return False

# Check node keyword arguments individually
if any(
getattr(kwarg.meta["val"], "_has_symbolic_sizes_strides", False)
for kwarg in node.kwargs.values()
if isinstance(kwarg, torch.fx.Node)
):
return False

return True
17 changes: 9 additions & 8 deletions py/torch_tensorrt/dynamo/conversion/trt_interpreter.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,11 +10,10 @@
import tensorrt as trt
import torch
import torch.fx
from torch._ops import OpOverload
from torch.fx.node import _get_qualified_name
from torch.fx.passes.shape_prop import TensorMetadata

from torch_tensorrt.fx import CONVERTERS
from torch_tensorrt.dynamo import DYNAMO_CONVERTERS as CONVERTERS
from torch_tensorrt import Input
from torch_tensorrt.fx.observer import Observer
from torch_tensorrt.fx.utils import (
Expand Down Expand Up @@ -69,6 +68,7 @@ def __init__(
self.input_specs = input_specs
self.input_specs_iter = 0
self._cur_node_name: Optional[str] = None
self._cur_node: Optional[torch.fx.Node] = None
self._input_names: List[str] = []
self._output_names: List[str] = []
self._itensor_to_tensor_meta: Dict[
Expand All @@ -82,14 +82,14 @@ def validate_conversion(self):
missing_converter = set()

for node in self.module.graph.nodes:
if node.op == "call_function" and not CONVERTERS.get(node.target):
if node.op == "call_function" and not CONVERTERS.get(node):
missing_converter.add(f"{node.op} {_get_qualified_name(node.target)}")
elif node.op == "call_method" and not CONVERTERS.get(node.target):
elif node.op == "call_method" and not CONVERTERS.get(node):
missing_converter.add(f"{node.op} torch.Tensor.{node.target}")
elif node.op == "call_module":
submod = self.fetch_attr(node.target)
submod_type = getattr(submod, "_base_class_origin", type(submod))
if not CONVERTERS.get(submod_type):
if not CONVERTERS.get(node):
missing_converter.add(f"{node.op} {torch.typename(submod_type)}")

return missing_converter
Expand Down Expand Up @@ -226,6 +226,7 @@ def run(

def run_node(self, n):
self._cur_node_name = str(n)
self._cur_node = n
# add "_itensor_to_tensor_meta"
kwargs = dict(n.kwargs)
kwargs["_itensor_to_tensor_meta"] = self._itensor_to_tensor_meta
Expand Down Expand Up @@ -276,7 +277,7 @@ def call_module(self, target, args, kwargs):
assert isinstance(target, str)
submod = self.fetch_attr(target)
submod_type = getattr(submod, "_base_class_origin", type(submod))
converter = CONVERTERS.get(submod_type)
converter = CONVERTERS.get(self._cur_node)

if not converter:
raise RuntimeError(
Expand All @@ -287,7 +288,7 @@ def call_module(self, target, args, kwargs):
return converter(self.network, submod, args, kwargs, self._cur_node_name)

def call_function(self, target, args, kwargs):
converter = CONVERTERS.get(target)
converter = CONVERTERS.get(self._cur_node)
if not converter:
raise RuntimeError(
f"Conversion of function {torch.typename(target)} not currently supported!"
Expand All @@ -298,7 +299,7 @@ def call_function(self, target, args, kwargs):

def call_method(self, target, args, kwargs):
assert isinstance(target, str)
converter = CONVERTERS.get(target)
converter = CONVERTERS.get(self._cur_node)

if not converter:
raise RuntimeError(
Expand Down
Loading