Skip to content

feat: Fixed conv1d converter when weights are Tensor #2542

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 28 additions & 4 deletions core/conversion/converters/impl/conv_deconv.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -131,26 +131,43 @@ bool add_conv_deconv(ConversionCtx* ctx, const torch::jit::Node* n, args& args)

// Make a new Dims with only the spatial dimensions.
nvinfer1::Dims filter_dim;
nvinfer1::Dims original_dim = in->getDimensions();
int64_t nbSpatialDims = in->getDimensions().nbDims - 2;
TORCHTRT_CHECK(
nbSpatialDims = kernel_dims.nbDims - 2,
"Number of input spatial dimensions should match the kernel spatial dimensions");
filter_dim.nbDims = nbSpatialDims;
filter_dim.d[0] = kernel_dims.d[2];
filter_dim.d[1] = kernel_dims.d[3];
int32_t num_output_maps = kernel_dims.d[0];
bool expand_dims = nbSpatialDims == 1;
if (expand_dims) {
// In case of Conv1D -> map it to 2D version
// TensorRT expects nbSpatialDims = 2 or 3
filter_dim = util::unsqueezeDims(filter_dim, filter_dim.nbDims, 1, false);
// Reshape input dimensions
in = addPadding(ctx, n, in, 4);
LOG_DEBUG("Reshaping input dimensions to: " << in->getDimensions());
kernel = addPadding(ctx, n, kernel, 4);
LOG_DEBUG("Reshaping kernel dimensions to: " << kernel->getDimensions());
if (transposed) {
num_output_maps = kernel_dims.d[1];
}
}

// Initialize a dummy constant kernel to pass it to INetwork->addConvolutionNd/addDeconvolutionNd API.
auto kernel_weights = nvinfer1::Weights{nvinfer1::DataType::kFLOAT, nullptr, 0};

nvinfer1::ILayer* layer = nullptr;
nvinfer1::ITensor* out = nullptr;
if (transposed) {
// Fix padding based on output_padding provided
nvinfer1::Dims begPadding = padding;
bool hasOutputPadding = false;
add_output_padding(padding, out_padding, hasOutputPadding);

nvinfer1::IDeconvolutionLayer* deconvLayer = ctx->net->addDeconvolutionNd(
*in, kernel_dims.d[0], filter_dim, kernel_weights, hasOutputPadding ? nvinfer1::Weights{} : bias.data);
*in, num_output_maps, filter_dim, kernel_weights, hasOutputPadding ? nvinfer1::Weights{} : bias.data);
deconvLayer->setStrideNd(stride);
deconvLayer->setDilationNd(dilation);
deconvLayer->setNbGroups(groups);
Expand All @@ -161,15 +178,21 @@ bool add_conv_deconv(ConversionCtx* ctx, const torch::jit::Node* n, args& args)
deconvLayer->setInput(1, *kernel);
TORCHTRT_CHECK(deconvLayer, "Unable to create deconv layer with non-const weights from node: " << *n);
layer = deconvLayer;
out = deconvLayer->getOutput(0);
if (hasOutputPadding) {
LOG_DEBUG("Padding output deconvolution tensor with:" << out_padding);
nvinfer1::ITensor* tensorPtr = deconvLayer->getOutput(0);
auto dims = in->getDimensions();
layer = add_bias_layer(ctx, tensorPtr, dims, out_padding, bias);
out = layer->getOutput(0);
}
if (expand_dims) {
// Un-expand the expanded dimension
out = addUnpadding(ctx, n, out, original_dim.nbDims);
}
} else {
nvinfer1::IConvolutionLayer* convLayer =
ctx->net->addConvolutionNd(*in, kernel_dims.d[0], filter_dim, kernel_weights, bias.data);
ctx->net->addConvolutionNd(*in, num_output_maps, filter_dim, kernel_weights, bias.data);
convLayer->setStrideNd(stride);
convLayer->setPaddingMode(nvinfer1::PaddingMode::kCAFFE_ROUND_DOWN);
convLayer->setPaddingNd(padding);
Expand All @@ -180,10 +203,11 @@ bool add_conv_deconv(ConversionCtx* ctx, const torch::jit::Node* n, args& args)
// Set conv kernel weights
convLayer->setInput(1, *kernel);
layer = convLayer;
out = layer->getOutput(0);
}

ctx->AssociateValueAndTensor(n->outputs()[0], layer->getOutput(0));
LOG_DEBUG("Output tensor shape: " << layer->getOutput(0)->getDimensions());
ctx->AssociateValueAndTensor(n->outputs()[0], out);
LOG_DEBUG("Output tensor shape: " << out->getDimensions());
return true;
}

Expand Down
102 changes: 102 additions & 0 deletions tests/core/conversion/converters/test_conv_deconv.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -116,6 +116,57 @@ TEST(Converters, ATenConvolution1dConvertsCorrectly) {
ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}

TEST(Converters, ATenConv1dWithWeightTensorsConvertsCorrectly) {
const auto graph = R"IR(
graph(%0 : Tensor,
%1 : Float(4, 5, 3, strides=[15, 3, 1])):
%2 : int = prim::Constant[value=-128]()
%3 : float = prim::Constant[value=3.5]()
%4 : int = prim::Constant[value=0]()
%5 : int = prim::Constant[value=127]()
%quant_input : Tensor = aten::fake_quantize_per_tensor_affine(%0, %3, %4, %2, %5)
%6 : int = prim::Constant[value=6]()
%7 : int = prim::Constant[value=5]()
%8 : Device = prim::Constant[value="cuda:0"]()
%9 : None = prim::Constant()
%10 : int[] = prim::ListConstruct(%7)
%11 : Tensor = aten::full(%10, %3, %6, %9, %8, %9)
%12 : int[] = prim::ListConstruct(%7)
%13 : int = prim::Constant[value=1]()
%14 : Tensor = aten::full(%12, %13, %6, %9, %8, %9)
%quant_wts : Tensor = aten::fake_quantize_per_channel_affine(%1, %11, %14, %13, %2, %5)
%15 : None = prim::Constant()
%16 : int = prim::Constant[value=1]()
%17 : int = prim::Constant[value=0]()
%18 : int = prim::Constant[value=1]()
%19 : int = prim::Constant[value=0]()
%20 : bool = prim::Constant[value=0]()
%21 : int[] = prim::ListConstruct(%16)
%22 : int[] = prim::ListConstruct(%17)
%23 : int[] = prim::ListConstruct(%18)
%24 : int[] = prim::ListConstruct(%19)
%25 : Tensor = aten::_convolution(%quant_input, %quant_wts, %15, %21, %22, %23, %20, %24, %16, %20, %20, %20, %20)
return (%25))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

auto in = at::randint(1, 10, {4, 5, 3}, {at::kCUDA});
auto w = at::randint(1, 2, {4, 5, 3}, {at::kCUDA});

auto jit_in = at::clone(in);
auto jit_w = at::clone(w);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {jit_w});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
auto trt_w = at::clone(w);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {trt_w});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {trt_in}, nvinfer1::DataType::kINT8);

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenConvolutionNoBiasConvertsCorrectly) {
const auto graph = R"IR(
graph(%0 : Tensor,
Expand Down Expand Up @@ -609,6 +660,57 @@ TEST(Converters, ATenConv1dTransposeWithPaddingOutPaddingConvertsCorrectly) {
ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}

TEST(Converters, ATenConv1dTransposeWithWeightTensorsConvertsCorrectly) {
const auto graph = R"IR(
graph(%0 : Tensor,
%1 : Float(4, 5, 3, strides=[15, 3, 1])):
%2 : int = prim::Constant[value=-128]()
%3 : float = prim::Constant[value=3.5]()
%4 : int = prim::Constant[value=0]()
%5 : int = prim::Constant[value=127]()
%quant_input : Tensor = aten::fake_quantize_per_tensor_affine(%0, %3, %4, %2, %5)
%6 : int = prim::Constant[value=6]()
%7 : int = prim::Constant[value=4]()
%8 : Device = prim::Constant[value="cuda:0"]()
%9 : None = prim::Constant()
%10 : int[] = prim::ListConstruct(%7)
%11 : Tensor = aten::full(%10, %3, %6, %9, %8, %9)
%12 : int[] = prim::ListConstruct(%7)
%13 : int = prim::Constant[value=1]()
%14 : Tensor = aten::full(%12, %13, %6, %9, %8, %9)
%quant_wts : Tensor = aten::fake_quantize_per_channel_affine(%1, %11, %14, %13, %2, %5)
%15 : None = prim::Constant()
%16 : int = prim::Constant[value=1]()
%17 : int = prim::Constant[value=0]()
%18 : int = prim::Constant[value=1]()
%19 : int = prim::Constant[value=0]()
%20 : bool = prim::Constant[value=0]()
%21 : int[] = prim::ListConstruct(%16)
%22 : int[] = prim::ListConstruct(%17)
%23 : int[] = prim::ListConstruct(%18)
%24 : int[] = prim::ListConstruct(%19)
%25 : bool = prim::Constant[value=1]()
%26 : Tensor = aten::_convolution(%quant_input, %quant_wts, %15, %21, %22, %23, %25, %24, %18, %20, %20, %20, %20)
return (%26))IR";
auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

auto in = at::randint(1, 10, {4, 5, 3}, {at::kCUDA});
auto w = at::randint(1, 2, {5, 4, 3}, {at::kCUDA});

auto jit_in = at::clone(in);
auto jit_w = at::clone(w);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {jit_w});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
auto trt_w = at::clone(w);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {trt_w});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {trt_in}, nvinfer1::DataType::kINT8);

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenConvTransposeWithPaddingOutPaddingConvertsCorrectly) {
const auto graph = R"IR(
graph(%0 : Tensor,
Expand Down