Skip to content

Feat: support aten::adaptive_max_pool1d, aten::adaptive_avg_pool3d and aten::adaptive_max_pool3d operators and fix issue #791 #792

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Jan 31, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
47 changes: 28 additions & 19 deletions core/conversion/converters/impl/pooling.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -16,8 +16,13 @@ bool GlobalPoolingConverter(
nvinfer1::PoolingType pool_type) {
auto in = args[0].ITensorOrFreeze(ctx);
nvinfer1::Dims dims = in->getDimensions();
// Generate a bitmask of all 1s except the last 2 bits (N and C axes)
// Generate a bitmask of all 1s except the last 2 bits (N and C axes) when dims.nbDims > 2
uint32_t reduceAxes = ((1 << dims.nbDims) - 1) & ~0b11;
// Generate a bitmask of all 1s except the last 1 bits (N axes) when dims.nbDims == 2. `aten::adaptive_avg_pool1d`'s
// input can be (N, C, L) or (C, L).
if (dims.nbDims == 2) {
reduceAxes = ((1 << dims.nbDims) - 1) & ~0b1;
}
auto* new_layer = ctx->net->addReduce(
*in,
pool_type == nvinfer1::PoolingType::kMAX ? nvinfer1::ReduceOperation::kMAX : nvinfer1::ReduceOperation::kAVG,
Expand All @@ -36,7 +41,8 @@ bool AdaptivePoolingConverter(
ConversionCtx* ctx,
const torch::jit::Node* n,
args& args,
nvinfer1::PoolingType pool_type) {
nvinfer1::PoolingType pool_type,
const std::string& mode) {
auto in = args[0].ITensorOrFreeze(ctx);
auto out_size = util::toDims(args[1].unwrapToIntList());

Expand All @@ -47,15 +53,7 @@ bool AdaptivePoolingConverter(
}

auto orig_dims = in->getDimensions();
bool expandDims = (orig_dims.nbDims < 4);
TORCHTRT_CHECK(orig_dims.nbDims > 2, "Unable to create pooling layer from node: " << *n);
if (expandDims) {
in = addPadding(ctx, n, in, 4, false, false);
}

if (out_size.nbDims == 1) {
out_size = util::unsqueezeDims(out_size, 0, 1);
}
TORCHTRT_CHECK(orig_dims.nbDims > 1, "Unable to create pooling layer from node: " << *n);

auto in_shape = util::toVec(in->getDimensions());
nvinfer1::ILayer* new_layer = nullptr;
Expand Down Expand Up @@ -89,10 +87,6 @@ bool AdaptivePoolingConverter(
int32_t use_scales_casted = 0;
f.emplace_back(nvinfer1::PluginField("use_scales", &use_scales_casted, nvinfer1::PluginFieldType::kINT32, 1));

std::string mode = "adaptive_avg_pool2d";
if (pool_type == nvinfer1::PoolingType::kMAX) {
mode = "adaptive_max_pool2d";
}
f.emplace_back(nvinfer1::PluginField("mode", &mode, nvinfer1::PluginFieldType::kCHAR, 1));

fc.nbFields = f.size();
Expand All @@ -109,7 +103,7 @@ bool AdaptivePoolingConverter(
TORCHTRT_CHECK(new_layer, "Unable to create pooling (interpolation) plugin from node" << *n);

new_layer->setName(util::node_info(n).c_str());
auto layer_output = addUnpadding(ctx, n, new_layer->getOutput(0), orig_dims.nbDims, false, false);
auto layer_output = new_layer->getOutput(0);

ctx->AssociateValueAndTensor(n->outputs()[0], layer_output);
LOG_DEBUG("Output tensor shape: " << layer_output->getDimensions());
Expand Down Expand Up @@ -237,15 +231,30 @@ auto pooling_registrations TORCHTRT_UNUSED =
}})
.pattern({"aten::adaptive_avg_pool1d(Tensor self, int[1] output_size) -> (Tensor)",
[](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
return AdaptivePoolingConverter(ctx, n, args, nvinfer1::PoolingType::kAVERAGE);
return AdaptivePoolingConverter(
ctx, n, args, nvinfer1::PoolingType::kAVERAGE, "adaptive_avg_pool1d");
}})
.pattern({"aten::adaptive_max_pool1d(Tensor self, int[2] output_size) -> (Tensor, Tensor)",
[](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
return AdaptivePoolingConverter(ctx, n, args, nvinfer1::PoolingType::kMAX, "adaptive_max_pool1d");
}})
.pattern({"aten::adaptive_avg_pool2d(Tensor self, int[2] output_size) -> (Tensor)",
[](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
return AdaptivePoolingConverter(ctx, n, args, nvinfer1::PoolingType::kAVERAGE);
return AdaptivePoolingConverter(
ctx, n, args, nvinfer1::PoolingType::kAVERAGE, "adaptive_avg_pool2d");
}})
.pattern({"aten::adaptive_max_pool2d(Tensor self, int[2] output_size) -> (Tensor, Tensor)",
[](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
return AdaptivePoolingConverter(ctx, n, args, nvinfer1::PoolingType::kMAX);
return AdaptivePoolingConverter(ctx, n, args, nvinfer1::PoolingType::kMAX, "adaptive_max_pool2d");
}})
.pattern({"aten::adaptive_avg_pool3d(Tensor self, int[3] output_size) -> (Tensor)",
[](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
return AdaptivePoolingConverter(
ctx, n, args, nvinfer1::PoolingType::kAVERAGE, "adaptive_avg_pool3d");
}})
.pattern({"aten::adaptive_max_pool3d(Tensor self, int[3] output_size) -> (Tensor, Tensor)",
[](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
return AdaptivePoolingConverter(ctx, n, args, nvinfer1::PoolingType::kMAX, "adaptive_max_pool3d");
}});
} // namespace
} // namespace impl
Expand Down
8 changes: 8 additions & 0 deletions core/plugins/impl/interpolate_plugin.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -289,10 +289,18 @@ int InterpolatePlugin::enqueue(
out = at::upsample_bilinear2d(input, {size_[0], size_[1]}, align_corners_);
} else if (mode_ == "trilinear") {
out = at::upsample_trilinear3d(input, {size_[0], size_[1], size_[2]}, align_corners_);
} else if (mode_ == "adaptive_avg_pool1d") {
out = at::adaptive_avg_pool1d(input, {size_[0]});
} else if (mode_ == "adaptive_max_pool1d") {
out = std::get<0>(at::adaptive_max_pool1d(input, {size_[0]}));
} else if (mode_ == "adaptive_avg_pool2d") {
out = at::adaptive_avg_pool2d(input, {size_[0], size_[1]});
} else if (mode_ == "adaptive_max_pool2d") {
out = std::get<0>(at::adaptive_max_pool2d(input, {size_[0], size_[1]}));
} else if (mode_ == "adaptive_avg_pool3d") {
out = at::adaptive_avg_pool3d(input, {size_[0], size_[1], size_[2]});
} else if (mode_ == "adaptive_max_pool3d") {
out = std::get<0>(at::adaptive_max_pool3d(input, {size_[0], size_[1], size_[2]}));
}
}

Expand Down
242 changes: 242 additions & 0 deletions tests/core/conversion/converters/test_pooling.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -436,6 +436,32 @@ TEST(Converters, ATenAdaptiveAvgPool2DConvertsCorrectly) {
ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenAdaptiveAvgPool2DGlobalPoolingConvertsCorrectly) {
const auto graph = R"IR(
graph(%0 : Tensor):
%2 : int = prim::Constant[value=1]()
%3 : int = prim::Constant[value=1]()
%6 : int[] = prim::ListConstruct(%2, %3)
%10 : Tensor = aten::adaptive_avg_pool2d(%0, %6)
return (%10))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

// PyTorch PyTorch adaptive_avg_pool2d needs a 4D input or a 3D input
auto in = at::randint(-5, 5, {64, 16, 32, 32}, at::kCUDA);

auto jit_in = at::clone(in);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {trt_in});

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenAdaptiveAvgPool2DConvertsCorrectlyWithDynamicInput) {
const auto graph = R"IR(
graph(%0 : Tensor):
Expand Down Expand Up @@ -488,6 +514,110 @@ TEST(Converters, ATenAdaptiveAvgPool1DConvertsCorrectly) {
ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 1.0));
}

TEST(Converters, ATenAdaptiveAvgPool1DGlobalPoolingConvertsCorrectly) {
const auto graph =
R"IR(
graph(%0 : Tensor):
%2 : int = prim::Constant[value=1]()
%6 : int[] = prim::ListConstruct(%2)
%10 : Tensor = aten::adaptive_avg_pool1d(%0, %6)
return (%10))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

// PyTorch adaptive_avg_pool1d needs a 3D input or a 2D input
auto in = at::randint(-5, 5, {3, 16}, at::kCUDA);

auto jit_in = at::clone(in);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {trt_in});

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenAdaptiveAvgPool1DUsingPluginConvertsCorrectly) {
const auto graph =
R"IR(
graph(%0 : Tensor):
%2 : int = prim::Constant[value=3]()
%6 : int[] = prim::ListConstruct(%2)
%10 : Tensor = aten::adaptive_avg_pool1d(%0, %6)
return (%10))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

// PyTorch adaptive_avg_pool1d needs a 3D input or a 2D input
auto in = at::randint(-5, 5, {1, 3, 16}, at::kCUDA);

auto jit_in = at::clone(in);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {trt_in});

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenAdaptiveMaxPool1DGlobalPoolingConvertsCorrectly) {
const auto graph =
R"IR(
graph(%0 : Tensor):
%2 : int = prim::Constant[value=1]()
%6 : int[] = prim::ListConstruct(%2)
%10 : Tensor, %11 : Tensor = aten::adaptive_max_pool1d(%0, %6)
return (%10, %11))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

// PyTorch adaptive_max_pool1d needs a 3D input or a 2D input
auto in = at::randint(-5, 5, {1, 3, 16}, at::kCUDA);

auto jit_in = at::clone(in);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {trt_in});

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenAdaptiveMaxPool1DUsingPluginConvertsCorrectly) {
const auto graph =
R"IR(
graph(%0 : Tensor):
%2 : int = prim::Constant[value=3]()
%6 : int[] = prim::ListConstruct(%2)
%10 : Tensor, %11 : Tensor = aten::adaptive_max_pool1d(%0, %6)
return (%10, %11))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

// PyTorch adaptive_max_pool1d needs a 3D input or a 2D input
auto in = at::randint(-5, 5, {1, 3, 16}, at::kCUDA);

auto jit_in = at::clone(in);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {trt_in});

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenAdaptiveMaxPool2DConvertsCorrectly) {
const auto graph = R"IR(
graph(%0 : Tensor):
Expand Down Expand Up @@ -539,3 +669,115 @@ TEST(Converters, ATenAdaptiveMaxPool2DConvertsCorrectlyWithDynamicInput) {

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenAdaptiveAvgPool3DGlobalPoolingConvertsCorrectly) {
const auto graph =
R"IR(
graph(%0 : Tensor):
%2 : int = prim::Constant[value=1]()
%3 : int = prim::Constant[value=1]()
%4 : int = prim::Constant[value=1]()
%6 : int[] = prim::ListConstruct(%2, %3, %4)
%10 : Tensor = aten::adaptive_avg_pool3d(%0, %6)
return (%10))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

// PyTorch adaptive_avg_pool3d needs a 5D input or a 4D input
auto in = at::randint(-5, 5, {4, 5, 3, 15, 16}, at::kCUDA);

auto jit_in = at::clone(in);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {trt_in});

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenAdaptiveAvgPool3DUsingPluginConvertsCorrectly) {
const auto graph =
R"IR(
graph(%0 : Tensor):
%2 : int = prim::Constant[value=7]()
%3 : int = prim::Constant[value=6]()
%4 : int = prim::Constant[value=5]()
%6 : int[] = prim::ListConstruct(%2, %3, %4)
%10 : Tensor = aten::adaptive_avg_pool3d(%0, %6)
return (%10))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

// PyTorch adaptive_avg_pool3d needs a 5D input or a 4D input
auto in = at::randint(-5, 5, {4, 5, 3, 15, 16}, at::kCUDA);

auto jit_in = at::clone(in);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {trt_in});

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenAdaptiveMaxPool3DGlobalPoolingConvertsCorrectly) {
const auto graph =
R"IR(
graph(%0 : Tensor):
%2 : int = prim::Constant[value=1]()
%3 : int = prim::Constant[value=1]()
%4 : int = prim::Constant[value=1]()
%6 : int[] = prim::ListConstruct(%2, %3, %4)
%10 : Tensor, %11 : Tensor = aten::adaptive_max_pool3d(%0, %6)
return (%10, %11))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

// PyTorch adaptive_max_pool3d needs a 5D input or a 4D input
auto in = at::randint(-5, 5, {5, 3, 15, 16}, at::kCUDA);

auto jit_in = at::clone(in);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {trt_in});

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenAdaptiveMaxPool3DUsingPluginConvertsCorrectly) {
const auto graph =
R"IR(
graph(%0 : Tensor):
%2 : int = prim::Constant[value=7]()
%3 : int = prim::Constant[value=8]()
%4 : int = prim::Constant[value=9]()
%6 : int[] = prim::ListConstruct(%2, %3, %4)
%10 : Tensor, %11 : Tensor = aten::adaptive_max_pool3d(%0, %6)
return (%10, %11))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

// PyTorch adaptive_max_pool3d needs a 5D input or a 4D input
auto in = at::randint(-5, 5, {4, 5, 3, 15, 16}, at::kCUDA);

auto jit_in = at::clone(in);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {trt_in});

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}