|
6 | 6 |
|
7 | 7 | # pyre-unsafe
|
8 | 8 |
|
9 |
| - |
10 | 9 | import unittest
|
11 | 10 |
|
12 | 11 | import torch
|
13 |
| -import torch.nn as nn |
14 |
| -import torch.nn.functional as F |
15 | 12 | from executorch.devtools.inspector._intermediate_output_capturer import (
|
16 | 13 | IntermediateOutputCapturer,
|
17 | 14 | )
|
18 |
| - |
| 15 | +from executorch.devtools.inspector.tests.inspector_test_utils import ( |
| 16 | + check_if_final_outputs_match, |
| 17 | + model_registry, |
| 18 | +) |
19 | 19 | from executorch.exir import EdgeCompileConfig, EdgeProgramManager, to_edge
|
20 | 20 | from torch.export import export, ExportedProgram
|
21 | 21 | from torch.fx import GraphModule
|
22 | 22 |
|
23 | 23 |
|
24 | 24 | class TestIntermediateOutputCapturer(unittest.TestCase):
|
25 |
| - @classmethod |
26 |
| - def setUpClass(cls): |
27 |
| - class TestModule(nn.Module): |
28 |
| - def __init__(self): |
29 |
| - super(TestModule, self).__init__() |
30 |
| - self.conv = nn.Conv2d( |
31 |
| - in_channels=1, out_channels=1, kernel_size=3, stride=1, padding=1 |
32 |
| - ) |
33 |
| - self.conv.weight = nn.Parameter( |
34 |
| - torch.tensor( |
35 |
| - [[[[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]]] |
36 |
| - ) |
37 |
| - ) |
38 |
| - self.conv.bias = nn.Parameter(torch.tensor([0.0])) |
39 |
| - |
40 |
| - self.linear = nn.Linear(in_features=4, out_features=2) |
41 |
| - self.linear.weight = nn.Parameter( |
42 |
| - torch.tensor([[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]]) |
43 |
| - ) |
44 |
| - self.linear.bias = nn.Parameter(torch.tensor([0.0, 0.0])) |
45 |
| - self.bias = nn.Parameter(torch.tensor([0.5, -0.5]), requires_grad=False) |
46 |
| - self.scale = nn.Parameter(torch.tensor([2.0, 0.5]), requires_grad=False) |
47 |
| - |
48 |
| - def forward(self, x): |
49 |
| - x = self.conv(x) |
50 |
| - x = x.view(x.size(0), -1) |
51 |
| - x = self.linear(x) |
52 |
| - x = x + self.bias |
53 |
| - x = x - 0.1 |
54 |
| - x = x * self.scale |
55 |
| - x = x / (self.scale + 1.0) |
56 |
| - x = F.relu(x) |
57 |
| - x = torch.sigmoid(x) |
58 |
| - x1, x2 = torch.split(x, 1, dim=1) |
59 |
| - return x1, x2 |
60 |
| - |
61 |
| - cls.model = TestModule() |
62 |
| - cls.input = torch.tensor([[[[1.0, 2.0], [3.0, 4.0]]]], requires_grad=True) |
63 |
| - cls.aten_model: ExportedProgram = export(cls.model, (cls.input,), strict=True) |
64 |
| - cls.edge_program_manager: EdgeProgramManager = to_edge( |
65 |
| - cls.aten_model, compile_config=EdgeCompileConfig(_check_ir_validity=True) |
| 25 | + def _set_up_model(self, model_name): |
| 26 | + model = model_registry[model_name]() |
| 27 | + input_tensor = model.get_input() |
| 28 | + aten_model: ExportedProgram = export(model, (input_tensor,), strict=True) |
| 29 | + edge_program_manager: EdgeProgramManager = to_edge( |
| 30 | + aten_model, compile_config=EdgeCompileConfig(_check_ir_validity=True) |
66 | 31 | )
|
67 |
| - cls.graph_module: GraphModule = cls.edge_program_manager._edge_programs[ |
| 32 | + graph_module: GraphModule = edge_program_manager._edge_programs[ |
68 | 33 | "forward"
|
69 | 34 | ].module()
|
70 |
| - cls.capturer = IntermediateOutputCapturer(cls.graph_module) |
71 |
| - cls.intermediate_outputs = cls.capturer.run_and_capture(cls.input) |
72 |
| - |
73 |
| - def test_keying_with_debug_handle_tuple(self): |
74 |
| - for key in self.intermediate_outputs.keys(): |
75 |
| - self.assertIsInstance(key, tuple) |
76 |
| - |
77 |
| - def test_tensor_cloning_and_detaching(self): |
78 |
| - for output in self.intermediate_outputs.values(): |
79 |
| - if isinstance(output, torch.Tensor): |
80 |
| - self.assertFalse(output.requires_grad) |
81 |
| - self.assertTrue(output.is_leaf) |
82 |
| - |
83 |
| - def test_placeholder_nodes_are_skipped(self): |
84 |
| - for node in self.graph_module.graph.nodes: |
85 |
| - if node.op == "placeholder": |
86 |
| - self.assertNotIn( |
87 |
| - node.meta.get("debug_handle"), self.intermediate_outputs |
| 35 | + capturer = IntermediateOutputCapturer(graph_module) |
| 36 | + intermediate_outputs = capturer.run_and_capture(input_tensor) |
| 37 | + return input_tensor, graph_module, capturer, intermediate_outputs |
| 38 | + |
| 39 | + def test_models(self): |
| 40 | + available_models = list(model_registry.keys()) |
| 41 | + for model_name in available_models: |
| 42 | + with self.subTest(model=model_name): |
| 43 | + input_tensor, graph_module, capturer, intermediate_outputs = ( |
| 44 | + self._set_up_model(model_name) |
88 | 45 | )
|
89 | 46 |
|
90 |
| - def test_multiple_outputs_capture(self): |
91 |
| - outputs = self.capturer.run_and_capture(self.input) |
92 |
| - for output in outputs.values(): |
93 |
| - if isinstance(output, tuple): |
94 |
| - self.assertEqual(len(output), 2) |
95 |
| - for part in output: |
96 |
| - self.assertIsInstance(part, torch.Tensor) |
97 |
| - |
98 |
| - def test_capture_correct_outputs(self): |
99 |
| - expected_outputs_with_handles = { |
100 |
| - (10,): torch.tensor([[[[7.7000, 6.7000], [4.7000, 3.7000]]]]), |
101 |
| - (11,): torch.tensor([[7.7000, 6.7000, 4.7000, 3.7000]]), |
102 |
| - (12,): torch.tensor( |
103 |
| - [[0.1000, 0.5000], [0.2000, 0.6000], [0.3000, 0.7000], [0.4000, 0.8000]] |
104 |
| - ), |
105 |
| - (13,): torch.tensor([[5.0000, 14.1200]]), |
106 |
| - (14,): torch.tensor([[5.5000, 13.6200]]), |
107 |
| - (15,): torch.tensor([[5.4000, 13.5200]]), |
108 |
| - (16,): torch.tensor([[10.8000, 6.7600]]), |
109 |
| - (17,): torch.tensor([3.0000, 1.5000]), |
110 |
| - (18,): torch.tensor([[3.6000, 4.5067]]), |
111 |
| - (19,): torch.tensor([[3.6000, 4.5067]]), |
112 |
| - (20,): torch.tensor([[0.9734, 0.9891]]), |
113 |
| - (21,): [torch.tensor([[0.9734]]), torch.tensor([[0.9891]])], |
114 |
| - } |
115 |
| - self.assertEqual( |
116 |
| - len(self.intermediate_outputs), len(expected_outputs_with_handles) |
117 |
| - ) |
118 |
| - |
119 |
| - for debug_handle, expected_output in expected_outputs_with_handles.items(): |
120 |
| - actual_output = self.intermediate_outputs.get(debug_handle) |
121 |
| - self.assertIsNotNone(actual_output) |
122 |
| - if isinstance(expected_output, list): |
123 |
| - self.assertIsInstance(actual_output, list) |
124 |
| - self.assertEqual(len(actual_output), len(expected_output)) |
125 |
| - for actual, expected in zip(actual_output, expected_output): |
126 |
| - self.assertTrue( |
127 |
| - torch.allclose(actual, expected, rtol=1e-4, atol=1e-5) |
128 |
| - ) |
129 |
| - else: |
| 47 | + # Test keying with debug handle tuple |
| 48 | + for key in intermediate_outputs.keys(): |
| 49 | + self.assertIsInstance(key, tuple) |
| 50 | + |
| 51 | + # Test tensor cloning and detaching |
| 52 | + for output in intermediate_outputs.values(): |
| 53 | + if isinstance(output, torch.Tensor): |
| 54 | + self.assertFalse(output.requires_grad) |
| 55 | + self.assertTrue(output.is_leaf) |
| 56 | + |
| 57 | + # Test placeholder nodes are skipped |
| 58 | + for node in graph_module.graph.nodes: |
| 59 | + if node.op == "placeholder": |
| 60 | + self.assertNotIn(node.meta.get("debug_handle"), node.meta) |
| 61 | + |
| 62 | + # Test multiple outputs capture |
| 63 | + outputs = capturer.run_and_capture(input_tensor) |
| 64 | + for output in outputs.values(): |
| 65 | + if isinstance(output, tuple): |
| 66 | + self.assertEqual(len(output), 2) |
| 67 | + for part in output: |
| 68 | + self.assertIsInstance(part, torch.Tensor) |
| 69 | + |
| 70 | + # Test capture correct outputs |
130 | 71 | self.assertTrue(
|
131 |
| - torch.allclose(actual_output, expected_output, rtol=1e-4, atol=1e-5) |
| 72 | + check_if_final_outputs_match(model_name, intermediate_outputs) |
132 | 73 | )
|
0 commit comments