Skip to content

Arm backend: Add DecomposeCosineSimilarity #10729

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 7, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions backends/arm/_passes/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
from .convert_squeezes_to_view import ConvertSqueezesToViewPass # noqa
from .convert_to_clamp import ConvertToClampPass # noqa
from .decompose_batchnorm_pass import DecomposeBatchNormPass # noqa
from .decompose_cosine_similarity_pass import DecomposeCosineSimilarityPass # noqa
from .decompose_div_pass import DecomposeDivPass # noqa
from .decompose_gelu_pass import DecomposeGeluPass # noqa
from .decompose_layernorm_pass import DecomposeLayerNormPass # noqa
Expand Down
2 changes: 2 additions & 0 deletions backends/arm/_passes/arm_pass_manager.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@
ConvertSqueezesToViewPass,
ConvertToClampPass,
DecomposeBatchNormPass,
DecomposeCosineSimilarityPass,
DecomposeDivPass,
DecomposeGeluPass,
DecomposeLayerNormPass,
Expand Down Expand Up @@ -205,6 +206,7 @@ def transform_for_annotation_pipeline(self, graph_module: GraphModule):
self.add_pass(DecomposeVarPass())
self.add_pass(DecomposeMeanDimPass())
self.add_pass(DecomposeNotEqualPass())
self.add_pass(DecomposeCosineSimilarityPass())
self.add_pass(DecomposeDivPass())
self.add_pass(DecomposeLeakyReLUPass())
self.add_pass(DecomposeSqrtPass())
Expand Down
75 changes: 75 additions & 0 deletions backends/arm/_passes/decompose_cosine_similarity_pass.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
# Copyright 2025 Arm Limited and/or its affiliates.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import torch
from executorch.exir.pass_base import ExportPass

torch_cosine_similarity = (torch.ops.aten.cosine_similarity.default,)


class DecomposeCosineSimilarityPass(ExportPass):
"""
Decomposition of aten.cosine_similarity:

dot = sum(mul(x1, x2), dims, keepdim=False)
norm = pow( sum(mul(x, x), dims, keepdim=False), 0.5 )
eps = full( (), eps_scalar )
n1c = max(norm1, eps)
n2c = max(norm2, eps)
denom = mul(n1c, n2c)
out = div(dot, denom)
"""

def call_operator(self, op, args, kwargs, meta):
if op not in torch_cosine_similarity:
return super().call_operator(op, args, kwargs, meta)

x1, x2 = args[0], args[1]
dim = kwargs.get("dim", 1)
eps = kwargs.get("eps", 1e-8)
dims = [dim] if isinstance(dim, int) else list(dim)

# 1) dot
prod = super().call_operator(torch.ops.aten.mul.Tensor, (x1, x2), {}, meta)
dot = super().call_operator(
torch.ops.aten.sum.dim_IntList, (prod, dims, False), {}, meta
)

# 2a) norm1 = pow(sum(x1*x1), 0.5)
x1_sq = super().call_operator(torch.ops.aten.mul.Tensor, (x1, x1), {}, meta)
s1 = super().call_operator(
torch.ops.aten.sum.dim_IntList, (x1_sq, dims, False), {}, meta
)
norm1 = super().call_operator(
torch.ops.aten.pow.Tensor_Scalar, (s1, 0.5), {}, meta
)

# 2b) norm2 = pow(sum(x2*x2), 0.5)
x2_sq = super().call_operator(torch.ops.aten.mul.Tensor, (x2, x2), {}, meta)
s2 = super().call_operator(
torch.ops.aten.sum.dim_IntList, (x2_sq, dims, False), {}, meta
)
norm2 = super().call_operator(
torch.ops.aten.pow.Tensor_Scalar, (s2, 0.5), {}, meta
)

# 3) eps scalar - we need to broadcast ourselves as TOSA dont do this for scalar
eps_t = super().call_operator(
torch.ops.aten.full_like.default, (norm1, eps), {}, meta
)

# 4) clamp to avoid zero division
n1c = super().call_operator(
torch.ops.aten.maximum.default, (norm1, eps_t), {}, meta
)
n2c = super().call_operator(
torch.ops.aten.maximum.default, (norm2, eps_t), {}, meta
)

# 5) denom and divide
denom = super().call_operator(torch.ops.aten.mul.Tensor, (n1c, n2c), {}, meta)
out = super().call_operator(torch.ops.aten.div.Tensor, (dot, denom), {}, meta)

return out
1 change: 0 additions & 1 deletion backends/arm/test/models/test_nn_functional.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,7 +106,6 @@ def test_nn_functional_MI(test_data):

x_fails = {
"normalize": "MLETORCH-852: Support aten.index_put.default",
"cosine_similarity": "MLETORCH-854: Support aten.linalg_vector_norm.default",
"unfold": "Int64 input && MLETORCH-827: Support aten.index.Tensor",
"fold": "Int64 input && MLETORCH-827: Support aten.index_put.default",
}
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
# Copyright 2025 Arm Limited and/or its affiliates.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

from typing import Tuple

import torch

from executorch.backends.arm._passes.decompose_cosine_similarity_pass import (
DecomposeCosineSimilarityPass,
)
from executorch.backends.arm.test import common
from executorch.backends.arm.test.tester.test_pipeline import PassPipeline

input_t = Tuple[torch.Tensor, torch.Tensor]


class CosineSimilarityModel(torch.nn.Module):
def get_inputs(self) -> input_t:
return (torch.rand(2, 3, 4), torch.rand(2, 3, 4))

def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
return torch.cosine_similarity(x1, x2, dim=1, eps=1e-6)


modules = {"cosine_basic": CosineSimilarityModel()}


@common.parametrize("module", modules)
def test_decompose_cosine_similarity_tosa_BI(module):

ops_after_pass = {
"executorch_exir_dialects_edge__ops_aten_mul_Tensor": 5,
"executorch_exir_dialects_edge__ops_aten_sum_dim_IntList": 3,
"executorch_exir_dialects_edge__ops_aten_pow_Tensor_Scalar": 2,
"executorch_exir_dialects_edge__ops_aten_full_like_default": 1,
"executorch_exir_dialects_edge__ops_aten_maximum_default": 2,
"executorch_exir_dialects_edge__ops_aten_reciprocal_default": 1,
}

pipeline = PassPipeline[input_t](
module,
module.get_inputs(),
tosa_version="TOSA-0.80+BI",
ops_before_pass=None,
ops_not_before_pass=None,
ops_after_pass=ops_after_pass,
ops_not_after_pass=None,
pass_list=[DecomposeCosineSimilarityPass],
)
pipeline.run()
Loading