Skip to content

[ET-VK] Add support for binary symint ops #11348

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jun 4, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions backends/vulkan/_passes/tag_memory_meta_pass.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,6 @@
# LICENSE file in the root directory of this source tree.

import logging
from copy import deepcopy
from typing import Any, Optional, Set

import executorch.backends.vulkan.utils as utils
Expand All @@ -22,6 +21,7 @@
from executorch.exir.dialects._ops import ops as exir_ops

from executorch.exir.pass_base import ExportPass, PassResult
from executorch.exir.tensor import TensorSpec

logger: logging.Logger = logging.getLogger("")
logger.setLevel(logging.INFO)
Expand Down Expand Up @@ -52,7 +52,7 @@ def insert_transition_node(
(arg,),
)
clone_node.meta["val"] = arg.meta["val"]
clone_node.meta["spec"] = deepcopy(arg.meta["spec"])
clone_node.meta["spec"] = TensorSpec.from_tensor(clone_node.meta["val"])
clone_node.meta["spec"].const = False
set_memory_metadata(clone_node, storage, layout)
arg.replace_all_uses_with(clone_node, lambda x, y=node: x == y)
Expand Down
26 changes: 18 additions & 8 deletions backends/vulkan/op_registry.py
Original file line number Diff line number Diff line change
Expand Up @@ -230,6 +230,7 @@ def update_features_impl(op: OpKey):
exir_ops.edge.quantized_decomposed.dequantize_per_channel.default,
# Symbolic integer ops
torch.ops.aten.sym_size.int,
operator.add,
]
)
def register_ephemeral_op(features: OpFeatures):
Expand Down Expand Up @@ -500,7 +501,12 @@ def register_sdpa_with_kv_cache_op(features: OpFeatures):
return features


@update_features(["llama::update_cache", "llama::custom_sdpa"])
@update_features(
[
"llama::update_cache",
"llama::custom_sdpa",
]
)
def register_sdpa_ops(features: OpFeatures):
features.resize_fn = False
features.buffer_impl = False
Expand All @@ -520,8 +526,17 @@ def register_rotary_emb_op(features: OpFeatures):
return features


@update_features(exir_ops.edge.aten.view_copy.default)
def register_view_op(features: OpFeatures):
@update_features(
[
exir_ops.edge.aten.clone.default,
exir_ops.edge.aten.permute.default,
exir_ops.edge.aten.permute_copy.default,
exir_ops.edge.aten.select_copy.int,
exir_ops.edge.aten.slice_copy.Tensor,
exir_ops.edge.aten.view_copy.default,
]
)
def register_view_ops(features: OpFeatures):
features.texture_impl = TextureImplFeatures(
valid_packed_dims=all_packed_dims,
)
Expand All @@ -538,10 +553,8 @@ def register_view_op(features: OpFeatures):
# Indexing and lookup
exir_ops.edge.aten.flip.default,
exir_ops.edge.aten.index_select.default,
exir_ops.edge.aten.select_copy.int,
# Tensor creation
exir_ops.edge.aten.arange.start_step,
exir_ops.edge.aten.clone.default,
exir_ops.edge.aten.constant_pad_nd.default,
exir_ops.edge.aten.full.default,
exir_ops.edge.aten.full_like.default,
Expand All @@ -564,12 +577,9 @@ def register_ported_op(features: OpFeatures):
# Ops ported from PyTorch Vulkan backend. These ops are in a separate registry becasue they support all packed dimensions
@update_features(
[
# Indexing and lookup
exir_ops.edge.aten.slice_copy.Tensor,
# Shape Manipulation
exir_ops.edge.aten.squeeze_copy.dims,
exir_ops.edge.aten.unsqueeze_copy.default,
exir_ops.edge.aten.permute_copy.default,
# Tensor combination
exir_ops.edge.aten.cat.default,
exir_ops.edge.aten.repeat.default,
Expand Down
120 changes: 83 additions & 37 deletions backends/vulkan/runtime/graph/ops/impl/Permute.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -25,10 +25,12 @@ using utils::uvec4;
namespace {

void check_args(
const api::vTensor& in,
const std::vector<int64_t>& permute_dims,
const api::vTensor& out) {
VK_CHECK_COND(check_same_packed_dim(in, out));
ComputeGraph& graph,
const ValueRef in,
const ValueRef permute_dims,
const ValueRef out) {
(void)permute_dims;
VK_CHECK_COND(check_same_packed_dim(graph, in, out));

// This implementation doesn't not requires the input tensor to have the same
// dim size as the argument. The code will work as long as the input tensor's
Expand All @@ -38,40 +40,94 @@ void check_args(

} // namespace

void resize_permute_node(
ComputeGraph* graph,
const std::vector<ArgGroup>& args,
const std::vector<ValueRef>& resize_args) {
const ValueRef out = args[0].refs[0];
const ValueRef in = args[1].refs[0];

const std::vector<int64_t> in_sizes = graph->sizes_of(in);
const std::vector<int64_t> out_sizes = graph->sizes_of(out);

const std::vector<int64_t> permute_dims =
graph->extract_int_or_symint_list(resize_args[0]);

if (in_sizes.size() == out_sizes.size() &&
in_sizes.size() == permute_dims.size()) {
std::vector<int64_t> new_out_sizes(out_sizes.size(), 1);
const int64_t out_ndim = std::max(in_sizes.size(), out_sizes.size());
for (int i = 0; i < out_ndim; i++) {
const int64_t permute_dim = permute_dims.at(i);
new_out_sizes.at(i) = in_sizes.at(permute_dim);
}
graph->virtual_resize(out, new_out_sizes);
}
// Case where permute is being used to implement squeeze
else if (
in_sizes.size() > out_sizes.size() &&
in_sizes.size() == permute_dims.size()) {
std::vector<int64_t> new_out_sizes(out_sizes.size(), 1);
const size_t offset = in_sizes.size() - out_sizes.size();
for (int i = 0; i < out_sizes.size(); i++) {
const int64_t permute_dim = permute_dims.at(i + offset);
new_out_sizes.at(i) = in_sizes.at(permute_dim);
}
graph->virtual_resize(out, new_out_sizes);
}
// Case where Permute is being used to implement unsqueeze
else if (
in_sizes.size() < out_sizes.size() &&
out_sizes.size() == permute_dims.size()) {
std::vector<int64_t> new_out_sizes(out_sizes.size(), 1);
const size_t offset = out_sizes.size() - in_sizes.size();
for (int i = 0; i < out_sizes.size(); i++) {
int64_t permute_dim = permute_dims.at(i) - offset;
if (permute_dim >= 0) {
new_out_sizes.at(i) = in_sizes.at(permute_dim);
}
}
graph->virtual_resize(out, new_out_sizes);
} else {
VK_THROW("Invalid permute dims");
}
}

void add_permute_node(
ComputeGraph& graph,
ValueRef in,
const std::vector<int64_t>& permute_dims,
ValueRef out) {
vTensorPtr t_in = graph.get_tensor(in);
vTensorPtr t_out = graph.get_tensor(out);

check_args(*t_in, permute_dims, *t_out);
const ValueRef in,
const ValueRef permute_dims,
const ValueRef out) {
check_args(graph, in, permute_dims, out);

ivec4 out_dims{0, 1, 2, 3};

// Special cases of squeeze/unsqueeze. Because the input dim size can be
// different with output dim size. So pick t_in->dim() if squeeze, and
// t_out->dim() if unsqueeze to create parameter for permute.
int64_t out_ndim = std::max(t_in->dim(), t_out->dim());
// different with output dim size. So pick graph.dim_of(in) if squeeze, and
// graph.dim_of(out) if unsqueeze to create parameter for permute.
const int64_t out_ndim = std::max(graph.dim_of(in), graph.dim_of(out));
std::vector<bool> seen(out_ndim);
for (int i = 0; i < out_ndim; i++) {
int64_t permute_dim = permute_dims[i];
VK_CHECK_COND(
!seen[permute_dim], "Argument dim ", permute_dim, " is repeated");
seen[permute_dim] = true;

out_dims[(4u - out_ndim) + i] = permute_dim + (4 - out_ndim);
{
IntListPtr permute_dims_ptr = graph.get_int_list(permute_dims);
for (int i = 0; i < out_ndim; i++) {
int64_t permute_dim = permute_dims_ptr->at(i);
VK_CHECK_COND(
!seen[permute_dim], "Argument dim ", permute_dim, " is repeated");
seen[permute_dim] = true;

out_dims[(4u - out_ndim) + i] =
utils::safe_downcast<int32_t>(permute_dim + (4 - out_ndim));
}
}

std::string kernel_name = "permute";
kernel_name.reserve(kShaderNameReserve);
add_dtype_suffix(kernel_name, *t_out);
add_dtype_suffix(kernel_name, graph.dtype_of(out));

int32_t out_channels = dim_at<kChannel4D>(t_out->sizes());
int32_t in_channels = dim_at<kChannel4D>(t_in->sizes());
const int32_t out_channels = dim_at<kChannel4D>(graph.sizes_of(out));
const int32_t in_channels = dim_at<kChannel4D>(graph.sizes_of(in));

const auto packed_dim = graph.packed_dim_of(in);
const int32_t packed_dim = graph.packed_dim_of(in);
ivec2 channel_info = {out_channels, in_channels};
if (packed_dim == WHCN::kChannelsDim) {
channel_info[0] = utils::align_up_4(channel_info[0]);
Expand All @@ -95,19 +151,9 @@ void add_permute_node(
// Specialization Constants
spec_vars,
// Resize Args
{},
{permute_dims},
// Resizing Logic
nullptr));
}

void add_permute_node(
ComputeGraph& graph,
ValueRef in,
ValueRef permute_dims_ref,
ValueRef out) {
IntListPtr permute_dims = graph.get_int_list(permute_dims_ref);

add_permute_node(graph, in, *permute_dims, out);
resize_permute_node));
}

void permute(ComputeGraph& graph, const std::vector<ValueRef>& args) {
Expand Down
6 changes: 3 additions & 3 deletions backends/vulkan/runtime/graph/ops/impl/Permute.h
Original file line number Diff line number Diff line change
Expand Up @@ -18,8 +18,8 @@ namespace vkcompute {

void add_permute_node(
ComputeGraph& graph,
ValueRef in,
const std::vector<int64_t>& permute_dims,
ValueRef out);
const ValueRef in,
const ValueRef permute_dims,
const ValueRef out);

} // namespace vkcompute
22 changes: 14 additions & 8 deletions backends/vulkan/runtime/graph/ops/impl/RotaryEmbedding.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -15,14 +15,20 @@ namespace vkcompute {
void resize_rotary_embedding_node(
ComputeGraph* graph,
const std::vector<ArgGroup>& args,
const std::vector<ValueRef>& extra_args) {
(void)extra_args;
vTensorPtr out = graph->get_tensor(args[0].refs[0]);
vTensorPtr in = graph->get_tensor(args[1].refs[0]);

std::vector<int64_t> in_sizes = in->sizes();
// UNCOMMENT BELOW IF NEEDED
// out->virtual_resize(in_sizes);
const std::vector<ValueRef>& resize_args) {
(void)resize_args;

const ValueRef xq_out = args.at(0).refs.at(0);
const ValueRef xk_out = args.at(0).refs.at(1);

const ValueRef xq = args.at(1).refs.at(0);
const ValueRef xk = args.at(1).refs.at(1);

const std::vector<int64_t> xq_sizes = graph->sizes_of(xq);
const std::vector<int64_t> xk_sizes = graph->sizes_of(xk);

graph->virtual_resize(xq_out, xq_sizes);
graph->virtual_resize(xk_out, xk_sizes);
}

void add_rotary_embedding_node(
Expand Down
27 changes: 15 additions & 12 deletions backends/vulkan/runtime/graph/ops/impl/Squeeze.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -17,28 +17,29 @@ namespace vkcompute {

void add_squeeze_copy_dims_node(
ComputeGraph& graph,
ValueRef in,
ValueRef dims_ref,
ValueRef out) {
vTensorPtr t_in = graph.get_tensor(in);
vTensorPtr t_out = graph.get_tensor(out);
const ValueRef in,
const ValueRef dims_ref,
const ValueRef out) {
const int64_t in_dim = graph.dim_of(in);
const std::vector<int64_t> in_sizes = graph.sizes_of(in);
const std::vector<int64_t> out_sizes = graph.sizes_of(in);

IntListPtr dims = graph.get_int_list(dims_ref);
const std::vector<int64_t> dims = graph.extract_int_or_symint_list(dims_ref);
std::vector<int64_t> squeeze_dims;
// Filter out edge cases that we don't need squeeze:
// 1. The size of squeeze dim is larger than 1.
// 2. Squeeze outter most dim
// For these cases, just pass input to output via clone.
for (int i = 0; i < dims->size(); ++i) {
if (dims->at(i) != 0 && t_in->sizes().at(dims->at(i)) == 1) {
squeeze_dims.push_back(dims->at(i));
for (int i = 0; i < dims.size(); ++i) {
if (dims.at(i) != 0 && in_sizes.at(dims.at(i)) == 1) {
squeeze_dims.push_back(dims.at(i));
}
}
if (squeeze_dims.size() == 0) {
add_clone_node(graph, in, out);
} else {
std::vector<int64_t> permute_dims(t_in->dim());
for (int i = 0; i < t_in->dim(); ++i) {
std::vector<int64_t> permute_dims(in_dim);
for (int i = 0; i < in_dim; ++i) {
permute_dims.at(i) = i;
}
for (auto& elem : squeeze_dims) {
Expand All @@ -48,7 +49,9 @@ void add_squeeze_copy_dims_node(
std::rotate(permute_dims.begin(), it, it + 1);
}

add_permute_node(graph, in, permute_dims, out);
const ValueRef permute_dims_ref =
graph.add_scalar_list<int64_t>(std::vector<int64_t>(permute_dims));
add_permute_node(graph, in, permute_dims_ref, out);
}
}

Expand Down
Loading
Loading