-
Notifications
You must be signed in to change notification settings - Fork 607
Replace view_copy with view (2/3) #2462
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
🔗 Helpful Links🧪 See artifacts and rendered test results at hud.pytorch.org/pr/pytorch/executorch/2462
Note: Links to docs will display an error until the docs builds have been completed. ✅ No FailuresAs of commit 6f1239b with merge base d612c23 ( This comment was automatically generated by Dr. CI and updates every 15 minutes. |
This pull request was exported from Phabricator. Differential Revision: D54827305 |
Summary: Design: https://docs.google.com/document/d/1l9x925EOrE8mHFJdRCC59nBJXyqBdnoeK-EgNQScXD0/edit#heading=h.kocb2mvchnib This stack replaces view_copy nodes with memory.view nodes. In the first diff (D54816555), I write a pass to normalize view_copy nodes by making their base point to the upstream non-view node. This means if we have something like op -> view_copy1 -> view_copy2, then after normalization, both view copies will point to op in their base (assuming op is not a view node). Note that this pass combined with dead-code elimination removes redundant view copies. This is because a redundant view copy will have no users have this pass. In the second diff (D54827305), I write a pass to convert view_copy nodes to memory.view nodes. A memory.view is similar to torch.ops.aten.view.default, but it is its own function so that we can handle it specially during memory planning and emission. A memory.view node has a special TensorSpec of type _MemoryViewSpec. This spec is immutable and dynamically looks up non-size related fields from its base's TensorSpec. Because it is immutable, fields on a _MemoryViewSpec cannot be set, but if a field is updated on the base spec, this update is reflected in the memory.view node's _MemoryViewSpec. Not all view_copy nodes are converted to memory.view nodes. Only static nodes that are memory planned are converted. Not all static nodes are memory planned in ExecuTorch. For example, there is an option to turn off memory planning for input nodes, and outputs from some higher order ops like cond are not memory planned. Which nodes are memory planned is not easily available, and I did not try to cover all cases of nodes that can be converted. We can expand this list over time. In the third diff (D54827438), I implement the actual view_copy elimination. In the ExecutorchBackendConfig, there is a new option remove_static_view_copy. If remove_static_view_copy = True, the memory planning passes are [NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass]; if remove_static_view_copy = False, the memory planning passes are [config.to_out_var_pass, config.memory_planning_pass] (state today). Let's look at the flow when remove_static_view_copy = True: NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass. The first two steps are the just the first and second diff described above. In config.to_out_var_pass, the memory.view nodes are skipped. In config.memory_planning_pass, when a spec is requested for a memory.view node (e.g., to update the lifetime), we return the spec of its base. Returning the spec for the base means that whenever we see a memory.view node, we actually update the lifetime of the base to cover it. Moreover, the memory.view node's special _MemoryViewSpec sees this update reflected. (Note that an exception would be thrown if we kept the usual flow and returned the spec for the memory.view node. This is because the special _MemoryViewSpec is immutable and would not allow the memory_planning_pass to update its lifetime.) Finally, during emission the memory.view is emitted as an evalue. There are two more diffs on the stack D54866523 and D54866539. The first of these replaces the old RemoveRedundantViewCopy pass with a NormalizeViewCopyBasePass + dead code elimination. The second converts view-like ops (squeeze, unsqueeze, slice) to view ops when safe to do so to take advantage of the view_copy elimination. Differential Revision: D54827305
Summary: Design: https://docs.google.com/document/d/1l9x925EOrE8mHFJdRCC59nBJXyqBdnoeK-EgNQScXD0/edit#heading=h.kocb2mvchnib This stack replaces view_copy nodes with memory.view nodes. In the first diff (D54816555), I write a pass to normalize view_copy nodes by making their base point to the upstream non-view node. This means if we have something like op -> view_copy1 -> view_copy2, then after normalization, both view copies will point to op in their base (assuming op is not a view node). Note that this pass combined with dead-code elimination removes redundant view copies. This is because a redundant view copy will have no users have this pass. In the second diff (D54827305), I write a pass to convert view_copy nodes to memory.view nodes. A memory.view is similar to torch.ops.aten.view.default, but it is its own function so that we can handle it specially during memory planning and emission. A memory.view node has a special TensorSpec of type _MemoryViewSpec. This spec is immutable and dynamically looks up non-size related fields from its base's TensorSpec. Because it is immutable, fields on a _MemoryViewSpec cannot be set, but if a field is updated on the base spec, this update is reflected in the memory.view node's _MemoryViewSpec. Not all view_copy nodes are converted to memory.view nodes. Only static nodes that are memory planned are converted. Not all static nodes are memory planned in ExecuTorch. For example, there is an option to turn off memory planning for input nodes, and outputs from some higher order ops like cond are not memory planned. Which nodes are memory planned is not easily available, and I did not try to cover all cases of nodes that can be converted. We can expand this list over time. In the third diff (D54827438), I implement the actual view_copy elimination. In the ExecutorchBackendConfig, there is a new option remove_static_view_copy. If remove_static_view_copy = True, the memory planning passes are [NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass]; if remove_static_view_copy = False, the memory planning passes are [config.to_out_var_pass, config.memory_planning_pass] (state today). Let's look at the flow when remove_static_view_copy = True: NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass. The first two steps are the just the first and second diff described above. In config.to_out_var_pass, the memory.view nodes are skipped. In config.memory_planning_pass, when a spec is requested for a memory.view node (e.g., to update the lifetime), we return the spec of its base. Returning the spec for the base means that whenever we see a memory.view node, we actually update the lifetime of the base to cover it. Moreover, the memory.view node's special _MemoryViewSpec sees this update reflected. (Note that an exception would be thrown if we kept the usual flow and returned the spec for the memory.view node. This is because the special _MemoryViewSpec is immutable and would not allow the memory_planning_pass to update its lifetime.) Finally, during emission the memory.view is emitted as an evalue. There are two more diffs on the stack D54866523 and D54866539. The first of these replaces the old RemoveRedundantViewCopy pass with a NormalizeViewCopyBasePass + dead code elimination. The second converts view-like ops (squeeze, unsqueeze, slice) to view ops when safe to do so to take advantage of the view_copy elimination. Differential Revision: D54827305
9f3cbba
to
a70fd89
Compare
Summary: Design: https://docs.google.com/document/d/1l9x925EOrE8mHFJdRCC59nBJXyqBdnoeK-EgNQScXD0/edit#heading=h.kocb2mvchnib This stack replaces view_copy nodes with memory.view nodes. In the first diff (D54816555), I write a pass to normalize view_copy nodes by making their base point to the upstream non-view node. This means if we have something like op -> view_copy1 -> view_copy2, then after normalization, both view copies will point to op in their base (assuming op is not a view node). Note that this pass combined with dead-code elimination removes redundant view copies. This is because a redundant view copy will have no users have this pass. In the second diff (D54827305), I write a pass to convert view_copy nodes to memory.view nodes. A memory.view is similar to torch.ops.aten.view.default, but it is its own function so that we can handle it specially during memory planning and emission. A memory.view node has a special TensorSpec of type _MemoryViewSpec. This spec is immutable and dynamically looks up non-size related fields from its base's TensorSpec. Because it is immutable, fields on a _MemoryViewSpec cannot be set, but if a field is updated on the base spec, this update is reflected in the memory.view node's _MemoryViewSpec. Not all view_copy nodes are converted to memory.view nodes. Only static nodes that are memory planned are converted. Not all static nodes are memory planned in ExecuTorch. For example, there is an option to turn off memory planning for input nodes, and outputs from some higher order ops like cond are not memory planned. Which nodes are memory planned is not easily available, and I did not try to cover all cases of nodes that can be converted. We can expand this list over time. In the third diff (D54827438), I implement the actual view_copy elimination. In the ExecutorchBackendConfig, there is a new option remove_static_view_copy. If remove_static_view_copy = True, the memory planning passes are [NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass]; if remove_static_view_copy = False, the memory planning passes are [config.to_out_var_pass, config.memory_planning_pass] (state today). Let's look at the flow when remove_static_view_copy = True: NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass. The first two steps are the just the first and second diff described above. In config.to_out_var_pass, the memory.view nodes are skipped. In config.memory_planning_pass, when a spec is requested for a memory.view node (e.g., to update the lifetime), we return the spec of its base. Returning the spec for the base means that whenever we see a memory.view node, we actually update the lifetime of the base to cover it. Moreover, the memory.view node's special _MemoryViewSpec sees this update reflected. (Note that an exception would be thrown if we kept the usual flow and returned the spec for the memory.view node. This is because the special _MemoryViewSpec is immutable and would not allow the memory_planning_pass to update its lifetime.) Finally, during emission the memory.view is emitted as an evalue. There are two more diffs on the stack D54866523 and D54866539. The first of these replaces the old RemoveRedundantViewCopy pass with a NormalizeViewCopyBasePass + dead code elimination. The second converts view-like ops (squeeze, unsqueeze, slice) to view ops when safe to do so to take advantage of the view_copy elimination. Differential Revision: D54827305
This pull request was exported from Phabricator. Differential Revision: D54827305 |
Summary: Design: https://docs.google.com/document/d/1l9x925EOrE8mHFJdRCC59nBJXyqBdnoeK-EgNQScXD0/edit#heading=h.kocb2mvchnib This stack replaces view_copy nodes with memory.view nodes. In the first diff (D54816555), I write a pass to normalize view_copy nodes by making their base point to the upstream non-view node. This means if we have something like op -> view_copy1 -> view_copy2, then after normalization, both view copies will point to op in their base (assuming op is not a view node). Note that this pass combined with dead-code elimination removes redundant view copies. This is because a redundant view copy will have no users have this pass. In the second diff (D54827305), I write a pass to convert view_copy nodes to memory.view nodes. A memory.view is similar to torch.ops.aten.view.default, but it is its own function so that we can handle it specially during memory planning and emission. A memory.view node has a special TensorSpec of type _MemoryViewSpec. This spec is immutable and dynamically looks up non-size related fields from its base's TensorSpec. Because it is immutable, fields on a _MemoryViewSpec cannot be set, but if a field is updated on the base spec, this update is reflected in the memory.view node's _MemoryViewSpec. Not all view_copy nodes are converted to memory.view nodes. Only static nodes that are memory planned are converted. Not all static nodes are memory planned in ExecuTorch. For example, there is an option to turn off memory planning for input nodes, and outputs from some higher order ops like cond are not memory planned. Which nodes are memory planned is not easily available, and I did not try to cover all cases of nodes that can be converted. We can expand this list over time. In the third diff (D54827438), I implement the actual view_copy elimination. In the ExecutorchBackendConfig, there is a new option remove_static_view_copy. If remove_static_view_copy = True, the memory planning passes are [NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass]; if remove_static_view_copy = False, the memory planning passes are [config.to_out_var_pass, config.memory_planning_pass] (state today). Let's look at the flow when remove_static_view_copy = True: NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass. The first two steps are the just the first and second diff described above. In config.to_out_var_pass, the memory.view nodes are skipped. In config.memory_planning_pass, when a spec is requested for a memory.view node (e.g., to update the lifetime), we return the spec of its base. Returning the spec for the base means that whenever we see a memory.view node, we actually update the lifetime of the base to cover it. Moreover, the memory.view node's special _MemoryViewSpec sees this update reflected. (Note that an exception would be thrown if we kept the usual flow and returned the spec for the memory.view node. This is because the special _MemoryViewSpec is immutable and would not allow the memory_planning_pass to update its lifetime.) Finally, during emission the memory.view is emitted as an evalue. There are two more diffs on the stack D54866523 and D54866539. The first of these replaces the old RemoveRedundantViewCopy pass with a NormalizeViewCopyBasePass + dead code elimination. The second converts view-like ops (squeeze, unsqueeze, slice) to view ops when safe to do so to take advantage of the view_copy elimination. Differential Revision: D54827305
Summary: Design: https://docs.google.com/document/d/1l9x925EOrE8mHFJdRCC59nBJXyqBdnoeK-EgNQScXD0/edit#heading=h.kocb2mvchnib This stack replaces view_copy nodes with memory.view nodes. In the first diff (D54816555), I write a pass to normalize view_copy nodes by making their base point to the upstream non-view node. This means if we have something like op -> view_copy1 -> view_copy2, then after normalization, both view copies will point to op in their base (assuming op is not a view node). Note that this pass combined with dead-code elimination removes redundant view copies. This is because a redundant view copy will have no users have this pass. In the second diff (D54827305), I write a pass to convert view_copy nodes to memory.view nodes. A memory.view is similar to torch.ops.aten.view.default, but it is its own function so that we can handle it specially during memory planning and emission. A memory.view node has a special TensorSpec of type _MemoryViewSpec. This spec is immutable and dynamically looks up non-size related fields from its base's TensorSpec. Because it is immutable, fields on a _MemoryViewSpec cannot be set, but if a field is updated on the base spec, this update is reflected in the memory.view node's _MemoryViewSpec. Not all view_copy nodes are converted to memory.view nodes. Only static nodes that are memory planned are converted. Not all static nodes are memory planned in ExecuTorch. For example, there is an option to turn off memory planning for input nodes, and outputs from some higher order ops like cond are not memory planned. Which nodes are memory planned is not easily available, and I did not try to cover all cases of nodes that can be converted. We can expand this list over time. In the third diff (D54827438), I implement the actual view_copy elimination. In the ExecutorchBackendConfig, there is a new option remove_static_view_copy. If remove_static_view_copy = True, the memory planning passes are [NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass]; if remove_static_view_copy = False, the memory planning passes are [config.to_out_var_pass, config.memory_planning_pass] (state today). Let's look at the flow when remove_static_view_copy = True: NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass. The first two steps are the just the first and second diff described above. In config.to_out_var_pass, the memory.view nodes are skipped. In config.memory_planning_pass, when a spec is requested for a memory.view node (e.g., to update the lifetime), we return the spec of its base. Returning the spec for the base means that whenever we see a memory.view node, we actually update the lifetime of the base to cover it. Moreover, the memory.view node's special _MemoryViewSpec sees this update reflected. (Note that an exception would be thrown if we kept the usual flow and returned the spec for the memory.view node. This is because the special _MemoryViewSpec is immutable and would not allow the memory_planning_pass to update its lifetime.) Finally, during emission the memory.view is emitted as an evalue. There are two more diffs on the stack D54866523 and D54866539. The first of these replaces the old RemoveRedundantViewCopy pass with a NormalizeViewCopyBasePass + dead code elimination. The second converts view-like ops (squeeze, unsqueeze, slice) to view ops when safe to do so to take advantage of the view_copy elimination. Differential Revision: D54827305
a70fd89
to
bbc2207
Compare
Summary: Design: https://docs.google.com/document/d/1l9x925EOrE8mHFJdRCC59nBJXyqBdnoeK-EgNQScXD0/edit#heading=h.kocb2mvchnib This stack replaces view_copy nodes with memory.view nodes. In the first diff (D54816555), I write a pass to normalize view_copy nodes by making their base point to the upstream non-view node. This means if we have something like op -> view_copy1 -> view_copy2, then after normalization, both view copies will point to op in their base (assuming op is not a view node). Note that this pass combined with dead-code elimination removes redundant view copies. This is because a redundant view copy will have no users have this pass. In the second diff (D54827305), I write a pass to convert view_copy nodes to memory.view nodes. A memory.view is similar to torch.ops.aten.view.default, but it is its own function so that we can handle it specially during memory planning and emission. A memory.view node has a special TensorSpec of type _MemoryViewSpec. This spec is immutable and dynamically looks up non-size related fields from its base's TensorSpec. Because it is immutable, fields on a _MemoryViewSpec cannot be set, but if a field is updated on the base spec, this update is reflected in the memory.view node's _MemoryViewSpec. Not all view_copy nodes are converted to memory.view nodes. Only static nodes that are memory planned are converted. Not all static nodes are memory planned in ExecuTorch. For example, there is an option to turn off memory planning for input nodes, and outputs from some higher order ops like cond are not memory planned. Which nodes are memory planned is not easily available, and I did not try to cover all cases of nodes that can be converted. We can expand this list over time. In the third diff (D54827438), I implement the actual view_copy elimination. In the ExecutorchBackendConfig, there is a new option remove_static_view_copy. If remove_static_view_copy = True, the memory planning passes are [NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass]; if remove_static_view_copy = False, the memory planning passes are [config.to_out_var_pass, config.memory_planning_pass] (state today). Let's look at the flow when remove_static_view_copy = True: NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass. The first two steps are the just the first and second diff described above. In config.to_out_var_pass, the memory.view nodes are skipped. In config.memory_planning_pass, when a spec is requested for a memory.view node (e.g., to update the lifetime), we return the spec of its base. Returning the spec for the base means that whenever we see a memory.view node, we actually update the lifetime of the base to cover it. Moreover, the memory.view node's special _MemoryViewSpec sees this update reflected. (Note that an exception would be thrown if we kept the usual flow and returned the spec for the memory.view node. This is because the special _MemoryViewSpec is immutable and would not allow the memory_planning_pass to update its lifetime.) Finally, during emission the memory.view is emitted as an evalue. There are two more diffs on the stack D54866523 and D54866539. The first of these replaces the old RemoveRedundantViewCopy pass with a NormalizeViewCopyBasePass + dead code elimination. The second converts view-like ops (squeeze, unsqueeze, slice) to view ops when safe to do so to take advantage of the view_copy elimination. Differential Revision: D54827305
This pull request was exported from Phabricator. Differential Revision: D54827305 |
bbc2207
to
51b305f
Compare
Summary: Design: https://docs.google.com/document/d/1l9x925EOrE8mHFJdRCC59nBJXyqBdnoeK-EgNQScXD0/edit#heading=h.kocb2mvchnib This stack replaces view_copy nodes with memory.view nodes. In the first diff (D54816555), I write a pass to normalize view_copy nodes by making their base point to the upstream non-view node. This means if we have something like op -> view_copy1 -> view_copy2, then after normalization, both view copies will point to op in their base (assuming op is not a view node). Note that this pass combined with dead-code elimination removes redundant view copies. This is because a redundant view copy will have no users have this pass. In the second diff (D54827305), I write a pass to convert view_copy nodes to memory.view nodes. A memory.view is similar to torch.ops.aten.view.default, but it is its own function so that we can handle it specially during memory planning and emission. A memory.view node has a special TensorSpec of type _MemoryViewSpec. This spec is immutable and dynamically looks up non-size related fields from its base's TensorSpec. Because it is immutable, fields on a _MemoryViewSpec cannot be set, but if a field is updated on the base spec, this update is reflected in the memory.view node's _MemoryViewSpec. Not all view_copy nodes are converted to memory.view nodes. Only static nodes that are memory planned are converted. Not all static nodes are memory planned in ExecuTorch. For example, there is an option to turn off memory planning for input nodes, and outputs from some higher order ops like cond are not memory planned. Which nodes are memory planned is not easily available, and I did not try to cover all cases of nodes that can be converted. We can expand this list over time. In the third diff (D54827438), I implement the actual view_copy elimination. In the ExecutorchBackendConfig, there is a new option remove_static_view_copy. If remove_static_view_copy = True, the memory planning passes are [NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass]; if remove_static_view_copy = False, the memory planning passes are [config.to_out_var_pass, config.memory_planning_pass] (state today). Let's look at the flow when remove_static_view_copy = True: NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass. The first two steps are the just the first and second diff described above. In config.to_out_var_pass, the memory.view nodes are skipped. In config.memory_planning_pass, when a spec is requested for a memory.view node (e.g., to update the lifetime), we return the spec of its base. Returning the spec for the base means that whenever we see a memory.view node, we actually update the lifetime of the base to cover it. Moreover, the memory.view node's special _MemoryViewSpec sees this update reflected. (Note that an exception would be thrown if we kept the usual flow and returned the spec for the memory.view node. This is because the special _MemoryViewSpec is immutable and would not allow the memory_planning_pass to update its lifetime.) Finally, during emission the memory.view is emitted as an evalue. There are two more diffs on the stack D54866523 and D54866539. The first of these replaces the old RemoveRedundantViewCopy pass with a NormalizeViewCopyBasePass + dead code elimination. The second converts view-like ops (squeeze, unsqueeze, slice) to view ops when safe to do so to take advantage of the view_copy elimination. Differential Revision: D54827305
This pull request was exported from Phabricator. Differential Revision: D54827305 |
Summary: Design: https://docs.google.com/document/d/1l9x925EOrE8mHFJdRCC59nBJXyqBdnoeK-EgNQScXD0/edit#heading=h.kocb2mvchnib This stack replaces view_copy nodes with memory.view nodes. In the first diff (D54816555), I write a pass to normalize view_copy nodes by making their base point to the upstream non-view node. This means if we have something like op -> view_copy1 -> view_copy2, then after normalization, both view copies will point to op in their base (assuming op is not a view node). Note that this pass combined with dead-code elimination removes redundant view copies. This is because a redundant view copy will have no users have this pass. In the second diff (D54827305), I write a pass to convert view_copy nodes to memory.view nodes. A memory.view is similar to torch.ops.aten.view.default, but it is its own function so that we can handle it specially during memory planning and emission. A memory.view node has a special TensorSpec of type _MemoryViewSpec. This spec is immutable and dynamically looks up non-size related fields from its base's TensorSpec. Because it is immutable, fields on a _MemoryViewSpec cannot be set, but if a field is updated on the base spec, this update is reflected in the memory.view node's _MemoryViewSpec. Not all view_copy nodes are converted to memory.view nodes. Only static nodes that are memory planned are converted. Not all static nodes are memory planned in ExecuTorch. For example, there is an option to turn off memory planning for input nodes, and outputs from some higher order ops like cond are not memory planned. Which nodes are memory planned is not easily available, and I did not try to cover all cases of nodes that can be converted. We can expand this list over time. In the third diff (D54827438), I implement the actual view_copy elimination. In the ExecutorchBackendConfig, there is a new option remove_static_view_copy. If remove_static_view_copy = True, the memory planning passes are [NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass]; if remove_static_view_copy = False, the memory planning passes are [config.to_out_var_pass, config.memory_planning_pass] (state today). Let's look at the flow when remove_static_view_copy = True: NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass. The first two steps are the just the first and second diff described above. In config.to_out_var_pass, the memory.view nodes are skipped. In config.memory_planning_pass, when a spec is requested for a memory.view node (e.g., to update the lifetime), we return the spec of its base. Returning the spec for the base means that whenever we see a memory.view node, we actually update the lifetime of the base to cover it. Moreover, the memory.view node's special _MemoryViewSpec sees this update reflected. (Note that an exception would be thrown if we kept the usual flow and returned the spec for the memory.view node. This is because the special _MemoryViewSpec is immutable and would not allow the memory_planning_pass to update its lifetime.) Finally, during emission the memory.view is emitted as an evalue. There are two more diffs on the stack D54866523 and D54866539. The first of these replaces the old RemoveRedundantViewCopy pass with a NormalizeViewCopyBasePass + dead code elimination. The second converts view-like ops (squeeze, unsqueeze, slice) to view ops when safe to do so to take advantage of the view_copy elimination. Reviewed By: larryliu0820 Differential Revision: D54827305
51b305f
to
87d96fc
Compare
This pull request was exported from Phabricator. Differential Revision: D54827305 |
87d96fc
to
b5069f4
Compare
Summary: Design: https://docs.google.com/document/d/1l9x925EOrE8mHFJdRCC59nBJXyqBdnoeK-EgNQScXD0/edit#heading=h.kocb2mvchnib This stack replaces view_copy nodes with memory.view nodes. In the first diff (D54816555), I write a pass to normalize view_copy nodes by making their base point to the upstream non-view node. This means if we have something like op -> view_copy1 -> view_copy2, then after normalization, both view copies will point to op in their base (assuming op is not a view node). Note that this pass combined with dead-code elimination removes redundant view copies. This is because a redundant view copy will have no users have this pass. In the second diff (D54827305), I write a pass to convert view_copy nodes to memory.view nodes. A memory.view is similar to torch.ops.aten.view.default, but it is its own function so that we can handle it specially during memory planning and emission. A memory.view node has a special TensorSpec of type _MemoryViewSpec. This spec is immutable and dynamically looks up non-size related fields from its base's TensorSpec. Because it is immutable, fields on a _MemoryViewSpec cannot be set, but if a field is updated on the base spec, this update is reflected in the memory.view node's _MemoryViewSpec. Not all view_copy nodes are converted to memory.view nodes. Only static nodes that are memory planned are converted. Not all static nodes are memory planned in ExecuTorch. For example, there is an option to turn off memory planning for input nodes, and outputs from some higher order ops like cond are not memory planned. Which nodes are memory planned is not easily available, and I did not try to cover all cases of nodes that can be converted. We can expand this list over time. In the third diff (D54827438), I implement the actual view_copy elimination. In the ExecutorchBackendConfig, there is a new option remove_static_view_copy. If remove_static_view_copy = True, the memory planning passes are [NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass]; if remove_static_view_copy = False, the memory planning passes are [config.to_out_var_pass, config.memory_planning_pass] (state today). Let's look at the flow when remove_static_view_copy = True: NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass. The first two steps are the just the first and second diff described above. In config.to_out_var_pass, the memory.view nodes are skipped. In config.memory_planning_pass, when a spec is requested for a memory.view node (e.g., to update the lifetime), we return the spec of its base. Returning the spec for the base means that whenever we see a memory.view node, we actually update the lifetime of the base to cover it. Moreover, the memory.view node's special _MemoryViewSpec sees this update reflected. (Note that an exception would be thrown if we kept the usual flow and returned the spec for the memory.view node. This is because the special _MemoryViewSpec is immutable and would not allow the memory_planning_pass to update its lifetime.) Finally, during emission the memory.view is emitted as an evalue. There are two more diffs on the stack D54866523 and D54866539. The first of these replaces the old RemoveRedundantViewCopy pass with a NormalizeViewCopyBasePass + dead code elimination. The second converts view-like ops (squeeze, unsqueeze, slice) to view ops when safe to do so to take advantage of the view_copy elimination. Reviewed By: larryliu0820 Differential Revision: D54827305
This pull request was exported from Phabricator. Differential Revision: D54827305 |
Summary: Design: https://docs.google.com/document/d/1l9x925EOrE8mHFJdRCC59nBJXyqBdnoeK-EgNQScXD0/edit#heading=h.kocb2mvchnib This stack replaces view_copy nodes with memory.view nodes. In the first diff (D54816555), I write a pass to normalize view_copy nodes by making their base point to the upstream non-view node. This means if we have something like op -> view_copy1 -> view_copy2, then after normalization, both view copies will point to op in their base (assuming op is not a view node). Note that this pass combined with dead-code elimination removes redundant view copies. This is because a redundant view copy will have no users have this pass. In the second diff (D54827305), I write a pass to convert view_copy nodes to memory.view nodes. A memory.view is similar to torch.ops.aten.view.default, but it is its own function so that we can handle it specially during memory planning and emission. A memory.view node has a special TensorSpec of type _MemoryViewSpec. This spec is immutable and dynamically looks up non-size related fields from its base's TensorSpec. Because it is immutable, fields on a _MemoryViewSpec cannot be set, but if a field is updated on the base spec, this update is reflected in the memory.view node's _MemoryViewSpec. Not all view_copy nodes are converted to memory.view nodes. Only static nodes that are memory planned are converted. Not all static nodes are memory planned in ExecuTorch. For example, there is an option to turn off memory planning for input nodes, and outputs from some higher order ops like cond are not memory planned. Which nodes are memory planned is not easily available, and I did not try to cover all cases of nodes that can be converted. We can expand this list over time. In the third diff (D54827438), I implement the actual view_copy elimination. In the ExecutorchBackendConfig, there is a new option remove_static_view_copy. If remove_static_view_copy = True, the memory planning passes are [NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass]; if remove_static_view_copy = False, the memory planning passes are [config.to_out_var_pass, config.memory_planning_pass] (state today). Let's look at the flow when remove_static_view_copy = True: NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass. The first two steps are the just the first and second diff described above. In config.to_out_var_pass, the memory.view nodes are skipped. In config.memory_planning_pass, when a spec is requested for a memory.view node (e.g., to update the lifetime), we return the spec of its base. Returning the spec for the base means that whenever we see a memory.view node, we actually update the lifetime of the base to cover it. Moreover, the memory.view node's special _MemoryViewSpec sees this update reflected. (Note that an exception would be thrown if we kept the usual flow and returned the spec for the memory.view node. This is because the special _MemoryViewSpec is immutable and would not allow the memory_planning_pass to update its lifetime.) Finally, during emission the memory.view is emitted as an evalue. There are two more diffs on the stack D54866523 and D54866539. The first of these replaces the old RemoveRedundantViewCopy pass with a NormalizeViewCopyBasePass + dead code elimination. The second converts view-like ops (squeeze, unsqueeze, slice) to view ops when safe to do so to take advantage of the view_copy elimination. Reviewed By: larryliu0820 Differential Revision: D54827305
b5069f4
to
b896c01
Compare
This pull request was exported from Phabricator. Differential Revision: D54827305 |
b896c01
to
82ad562
Compare
Summary: Pull Request resolved: pytorch#2462 Design: https://docs.google.com/document/d/1l9x925EOrE8mHFJdRCC59nBJXyqBdnoeK-EgNQScXD0/edit#heading=h.kocb2mvchnib This stack replaces view_copy nodes with memory.view nodes. In the first diff (D54816555), I write a pass to normalize view_copy nodes by making their base point to the upstream non-view node. This means if we have something like op -> view_copy1 -> view_copy2, then after normalization, both view copies will point to op in their base (assuming op is not a view node). Note that this pass combined with dead-code elimination removes redundant view copies. This is because a redundant view copy will have no users have this pass. In the second diff (D54827305), I write a pass to convert view_copy nodes to memory.view nodes. A memory.view is similar to torch.ops.aten.view.default, but it is its own function so that we can handle it specially during memory planning and emission. A memory.view node has a special TensorSpec of type _MemoryViewSpec. This spec is immutable and dynamically looks up non-size related fields from its base's TensorSpec. Because it is immutable, fields on a _MemoryViewSpec cannot be set, but if a field is updated on the base spec, this update is reflected in the memory.view node's _MemoryViewSpec. Not all view_copy nodes are converted to memory.view nodes. Only static nodes that are memory planned are converted. Not all static nodes are memory planned in ExecuTorch. For example, there is an option to turn off memory planning for input nodes, and outputs from some higher order ops like cond are not memory planned. Which nodes are memory planned is not easily available, and I did not try to cover all cases of nodes that can be converted. We can expand this list over time. In the third diff (D54827438), I implement the actual view_copy elimination. In the ExecutorchBackendConfig, there is a new option remove_static_view_copy. If remove_static_view_copy = True, the memory planning passes are [NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass]; if remove_static_view_copy = False, the memory planning passes are [config.to_out_var_pass, config.memory_planning_pass] (state today). Let's look at the flow when remove_static_view_copy = True: NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass. The first two steps are the just the first and second diff described above. In config.to_out_var_pass, the memory.view nodes are skipped. In config.memory_planning_pass, when a spec is requested for a memory.view node (e.g., to update the lifetime), we return the spec of its base. Returning the spec for the base means that whenever we see a memory.view node, we actually update the lifetime of the base to cover it. Moreover, the memory.view node's special _MemoryViewSpec sees this update reflected. (Note that an exception would be thrown if we kept the usual flow and returned the spec for the memory.view node. This is because the special _MemoryViewSpec is immutable and would not allow the memory_planning_pass to update its lifetime.) Finally, during emission the memory.view is emitted as an evalue. There are two more diffs on the stack D54866523 and D54866539. The first of these replaces the old RemoveRedundantViewCopy pass with a NormalizeViewCopyBasePass + dead code elimination. The second converts view-like ops (squeeze, unsqueeze, slice) to view ops when safe to do so to take advantage of the view_copy elimination. Reviewed By: larryliu0820 Differential Revision: D54827305
This pull request was exported from Phabricator. Differential Revision: D54827305 |
Summary: Design: https://docs.google.com/document/d/1l9x925EOrE8mHFJdRCC59nBJXyqBdnoeK-EgNQScXD0/edit#heading=h.kocb2mvchnib This stack replaces view_copy nodes with memory.view nodes. In the first diff (D54816555), I write a pass to normalize view_copy nodes by making their base point to the upstream non-view node. This means if we have something like op -> view_copy1 -> view_copy2, then after normalization, both view copies will point to op in their base (assuming op is not a view node). Note that this pass combined with dead-code elimination removes redundant view copies. This is because a redundant view copy will have no users have this pass. In the second diff (D54827305), I write a pass to convert view_copy nodes to memory.view nodes. A memory.view is similar to torch.ops.aten.view.default, but it is its own function so that we can handle it specially during memory planning and emission. A memory.view node has a special TensorSpec of type _MemoryViewSpec. This spec is immutable and dynamically looks up non-size related fields from its base's TensorSpec. Because it is immutable, fields on a _MemoryViewSpec cannot be set, but if a field is updated on the base spec, this update is reflected in the memory.view node's _MemoryViewSpec. Not all view_copy nodes are converted to memory.view nodes. Only static nodes that are memory planned are converted. Not all static nodes are memory planned in ExecuTorch. For example, there is an option to turn off memory planning for input nodes, and outputs from some higher order ops like cond are not memory planned. Which nodes are memory planned is not easily available, and I did not try to cover all cases of nodes that can be converted. We can expand this list over time. In the third diff (D54827438), I implement the actual view_copy elimination. In the ExecutorchBackendConfig, there is a new option remove_static_view_copy. If remove_static_view_copy = True, the memory planning passes are [NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass]; if remove_static_view_copy = False, the memory planning passes are [config.to_out_var_pass, config.memory_planning_pass] (state today). Let's look at the flow when remove_static_view_copy = True: NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass. The first two steps are the just the first and second diff described above. In config.to_out_var_pass, the memory.view nodes are skipped. In config.memory_planning_pass, when a spec is requested for a memory.view node (e.g., to update the lifetime), we return the spec of its base. Returning the spec for the base means that whenever we see a memory.view node, we actually update the lifetime of the base to cover it. Moreover, the memory.view node's special _MemoryViewSpec sees this update reflected. (Note that an exception would be thrown if we kept the usual flow and returned the spec for the memory.view node. This is because the special _MemoryViewSpec is immutable and would not allow the memory_planning_pass to update its lifetime.) Finally, during emission the memory.view is emitted as an evalue. There are two more diffs on the stack D54866523 and D54866539. The first of these replaces the old RemoveRedundantViewCopy pass with a NormalizeViewCopyBasePass + dead code elimination. The second converts view-like ops (squeeze, unsqueeze, slice) to view ops when safe to do so to take advantage of the view_copy elimination. Reviewed By: larryliu0820 Differential Revision: D54827305
82ad562
to
1aa3a7a
Compare
This pull request was exported from Phabricator. Differential Revision: D54827305 |
Summary: Design: https://docs.google.com/document/d/1l9x925EOrE8mHFJdRCC59nBJXyqBdnoeK-EgNQScXD0/edit#heading=h.kocb2mvchnib This stack replaces view_copy nodes with memory.view nodes. In the first diff (D54816555), I write a pass to normalize view_copy nodes by making their base point to the upstream non-view node. This means if we have something like op -> view_copy1 -> view_copy2, then after normalization, both view copies will point to op in their base (assuming op is not a view node). Note that this pass combined with dead-code elimination removes redundant view copies. This is because a redundant view copy will have no users have this pass. In the second diff (D54827305), I write a pass to convert view_copy nodes to memory.view nodes. A memory.view is similar to torch.ops.aten.view.default, but it is its own function so that we can handle it specially during memory planning and emission. A memory.view node has a special TensorSpec of type _MemoryViewSpec. This spec is immutable and dynamically looks up non-size related fields from its base's TensorSpec. Because it is immutable, fields on a _MemoryViewSpec cannot be set, but if a field is updated on the base spec, this update is reflected in the memory.view node's _MemoryViewSpec. Not all view_copy nodes are converted to memory.view nodes. Only static nodes that are memory planned are converted. Not all static nodes are memory planned in ExecuTorch. For example, there is an option to turn off memory planning for input nodes, and outputs from some higher order ops like cond are not memory planned. Which nodes are memory planned is not easily available, and I did not try to cover all cases of nodes that can be converted. We can expand this list over time. In the third diff (D54827438), I implement the actual view_copy elimination. In the ExecutorchBackendConfig, there is a new option remove_static_view_copy. If remove_static_view_copy = True, the memory planning passes are [NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass]; if remove_static_view_copy = False, the memory planning passes are [config.to_out_var_pass, config.memory_planning_pass] (state today). Let's look at the flow when remove_static_view_copy = True: NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass. The first two steps are the just the first and second diff described above. In config.to_out_var_pass, the memory.view nodes are skipped. In config.memory_planning_pass, when a spec is requested for a memory.view node (e.g., to update the lifetime), we return the spec of its base. Returning the spec for the base means that whenever we see a memory.view node, we actually update the lifetime of the base to cover it. Moreover, the memory.view node's special _MemoryViewSpec sees this update reflected. (Note that an exception would be thrown if we kept the usual flow and returned the spec for the memory.view node. This is because the special _MemoryViewSpec is immutable and would not allow the memory_planning_pass to update its lifetime.) Finally, during emission the memory.view is emitted as an evalue. There are two more diffs on the stack D54866523 and D54866539. The first of these replaces the old RemoveRedundantViewCopy pass with a NormalizeViewCopyBasePass + dead code elimination. The second converts view-like ops (squeeze, unsqueeze, slice) to view ops when safe to do so to take advantage of the view_copy elimination. Reviewed By: larryliu0820 Differential Revision: D54827305
1aa3a7a
to
9d27347
Compare
This pull request was exported from Phabricator. Differential Revision: D54827305 |
Summary: Design: https://docs.google.com/document/d/1l9x925EOrE8mHFJdRCC59nBJXyqBdnoeK-EgNQScXD0/edit#heading=h.kocb2mvchnib This stack replaces view_copy nodes with memory.view nodes. In the first diff (D54816555), I write a pass to normalize view_copy nodes by making their base point to the upstream non-view node. This means if we have something like op -> view_copy1 -> view_copy2, then after normalization, both view copies will point to op in their base (assuming op is not a view node). Note that this pass combined with dead-code elimination removes redundant view copies. This is because a redundant view copy will have no users have this pass. In the second diff (D54827305), I write a pass to convert view_copy nodes to memory.view nodes. A memory.view is similar to torch.ops.aten.view.default, but it is its own function so that we can handle it specially during memory planning and emission. A memory.view node has a special TensorSpec of type _MemoryViewSpec. This spec is immutable and dynamically looks up non-size related fields from its base's TensorSpec. Because it is immutable, fields on a _MemoryViewSpec cannot be set, but if a field is updated on the base spec, this update is reflected in the memory.view node's _MemoryViewSpec. Not all view_copy nodes are converted to memory.view nodes. Only static nodes that are memory planned are converted. Not all static nodes are memory planned in ExecuTorch. For example, there is an option to turn off memory planning for input nodes, and outputs from some higher order ops like cond are not memory planned. Which nodes are memory planned is not easily available, and I did not try to cover all cases of nodes that can be converted. We can expand this list over time. In the third diff (D54827438), I implement the actual view_copy elimination. In the ExecutorchBackendConfig, there is a new option remove_static_view_copy. If remove_static_view_copy = True, the memory planning passes are [NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass]; if remove_static_view_copy = False, the memory planning passes are [config.to_out_var_pass, config.memory_planning_pass] (state today). Let's look at the flow when remove_static_view_copy = True: NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass. The first two steps are the just the first and second diff described above. In config.to_out_var_pass, the memory.view nodes are skipped. In config.memory_planning_pass, when a spec is requested for a memory.view node (e.g., to update the lifetime), we return the spec of its base. Returning the spec for the base means that whenever we see a memory.view node, we actually update the lifetime of the base to cover it. Moreover, the memory.view node's special _MemoryViewSpec sees this update reflected. (Note that an exception would be thrown if we kept the usual flow and returned the spec for the memory.view node. This is because the special _MemoryViewSpec is immutable and would not allow the memory_planning_pass to update its lifetime.) Finally, during emission the memory.view is emitted as an evalue. There are two more diffs on the stack D54866523 and D54866539. The first of these replaces the old RemoveRedundantViewCopy pass with a NormalizeViewCopyBasePass + dead code elimination. The second converts view-like ops (squeeze, unsqueeze, slice) to view ops when safe to do so to take advantage of the view_copy elimination. Reviewed By: larryliu0820 Differential Revision: D54827305
9d27347
to
fac0153
Compare
This pull request was exported from Phabricator. Differential Revision: D54827305 |
Summary: Design: https://docs.google.com/document/d/1l9x925EOrE8mHFJdRCC59nBJXyqBdnoeK-EgNQScXD0/edit#heading=h.kocb2mvchnib This stack replaces view_copy nodes with memory.view nodes. In the first diff (D54816555), I write a pass to normalize view_copy nodes by making their base point to the upstream non-view node. This means if we have something like op -> view_copy1 -> view_copy2, then after normalization, both view copies will point to op in their base (assuming op is not a view node). Note that this pass combined with dead-code elimination removes redundant view copies. This is because a redundant view copy will have no users have this pass. In the second diff (D54827305), I write a pass to convert view_copy nodes to memory.view nodes. A memory.view is similar to torch.ops.aten.view.default, but it is its own function so that we can handle it specially during memory planning and emission. A memory.view node has a special TensorSpec of type _MemoryViewSpec. This spec is immutable and dynamically looks up non-size related fields from its base's TensorSpec. Because it is immutable, fields on a _MemoryViewSpec cannot be set, but if a field is updated on the base spec, this update is reflected in the memory.view node's _MemoryViewSpec. Not all view_copy nodes are converted to memory.view nodes. Only static nodes that are memory planned are converted. Not all static nodes are memory planned in ExecuTorch. For example, there is an option to turn off memory planning for input nodes, and outputs from some higher order ops like cond are not memory planned. Which nodes are memory planned is not easily available, and I did not try to cover all cases of nodes that can be converted. We can expand this list over time. In the third diff (D54827438), I implement the actual view_copy elimination. In the ExecutorchBackendConfig, there is a new option remove_static_view_copy. If remove_static_view_copy = True, the memory planning passes are [NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass]; if remove_static_view_copy = False, the memory planning passes are [config.to_out_var_pass, config.memory_planning_pass] (state today). Let's look at the flow when remove_static_view_copy = True: NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass. The first two steps are the just the first and second diff described above. In config.to_out_var_pass, the memory.view nodes are skipped. In config.memory_planning_pass, when a spec is requested for a memory.view node (e.g., to update the lifetime), we return the spec of its base. Returning the spec for the base means that whenever we see a memory.view node, we actually update the lifetime of the base to cover it. Moreover, the memory.view node's special _MemoryViewSpec sees this update reflected. (Note that an exception would be thrown if we kept the usual flow and returned the spec for the memory.view node. This is because the special _MemoryViewSpec is immutable and would not allow the memory_planning_pass to update its lifetime.) Finally, during emission the memory.view is emitted as an evalue. There are two more diffs on the stack D54866523 and D54866539. The first of these replaces the old RemoveRedundantViewCopy pass with a NormalizeViewCopyBasePass + dead code elimination. The second converts view-like ops (squeeze, unsqueeze, slice) to view ops when safe to do so to take advantage of the view_copy elimination. Reviewed By: larryliu0820 Differential Revision: D54827305
fac0153
to
ba50f16
Compare
This pull request was exported from Phabricator. Differential Revision: D54827305 |
Summary: Design: https://docs.google.com/document/d/1l9x925EOrE8mHFJdRCC59nBJXyqBdnoeK-EgNQScXD0/edit#heading=h.kocb2mvchnib This stack replaces view_copy nodes with memory.view nodes. In the first diff (D54816555), I write a pass to normalize view_copy nodes by making their base point to the upstream non-view node. This means if we have something like op -> view_copy1 -> view_copy2, then after normalization, both view copies will point to op in their base (assuming op is not a view node). Note that this pass combined with dead-code elimination removes redundant view copies. This is because a redundant view copy will have no users have this pass. In the second diff (D54827305), I write a pass to convert view_copy nodes to memory.view nodes. A memory.view is similar to torch.ops.aten.view.default, but it is its own function so that we can handle it specially during memory planning and emission. A memory.view node has a special TensorSpec of type _MemoryViewSpec. This spec is immutable and dynamically looks up non-size related fields from its base's TensorSpec. Because it is immutable, fields on a _MemoryViewSpec cannot be set, but if a field is updated on the base spec, this update is reflected in the memory.view node's _MemoryViewSpec. Not all view_copy nodes are converted to memory.view nodes. Only static nodes that are memory planned are converted. Not all static nodes are memory planned in ExecuTorch. For example, there is an option to turn off memory planning for input nodes, and outputs from some higher order ops like cond are not memory planned. Which nodes are memory planned is not easily available, and I did not try to cover all cases of nodes that can be converted. We can expand this list over time. In the third diff (D54827438), I implement the actual view_copy elimination. In the ExecutorchBackendConfig, there is a new option remove_static_view_copy. If remove_static_view_copy = True, the memory planning passes are [NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass]; if remove_static_view_copy = False, the memory planning passes are [config.to_out_var_pass, config.memory_planning_pass] (state today). Let's look at the flow when remove_static_view_copy = True: NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass. The first two steps are the just the first and second diff described above. In config.to_out_var_pass, the memory.view nodes are skipped. In config.memory_planning_pass, when a spec is requested for a memory.view node (e.g., to update the lifetime), we return the spec of its base. Returning the spec for the base means that whenever we see a memory.view node, we actually update the lifetime of the base to cover it. Moreover, the memory.view node's special _MemoryViewSpec sees this update reflected. (Note that an exception would be thrown if we kept the usual flow and returned the spec for the memory.view node. This is because the special _MemoryViewSpec is immutable and would not allow the memory_planning_pass to update its lifetime.) Finally, during emission the memory.view is emitted as an evalue. There are two more diffs on the stack D54866523 and D54866539. The first of these replaces the old RemoveRedundantViewCopy pass with a NormalizeViewCopyBasePass + dead code elimination. The second converts view-like ops (squeeze, unsqueeze, slice) to view ops when safe to do so to take advantage of the view_copy elimination. Reviewed By: larryliu0820 Differential Revision: D54816555
Summary: Design: https://docs.google.com/document/d/1l9x925EOrE8mHFJdRCC59nBJXyqBdnoeK-EgNQScXD0/edit#heading=h.kocb2mvchnib This stack replaces view_copy nodes with memory.view nodes. In the first diff (D54816555), I write a pass to normalize view_copy nodes by making their base point to the upstream non-view node. This means if we have something like op -> view_copy1 -> view_copy2, then after normalization, both view copies will point to op in their base (assuming op is not a view node). Note that this pass combined with dead-code elimination removes redundant view copies. This is because a redundant view copy will have no users have this pass. In the second diff (D54827305), I write a pass to convert view_copy nodes to memory.view nodes. A memory.view is similar to torch.ops.aten.view.default, but it is its own function so that we can handle it specially during memory planning and emission. A memory.view node has a special TensorSpec of type _MemoryViewSpec. This spec is immutable and dynamically looks up non-size related fields from its base's TensorSpec. Because it is immutable, fields on a _MemoryViewSpec cannot be set, but if a field is updated on the base spec, this update is reflected in the memory.view node's _MemoryViewSpec. Not all view_copy nodes are converted to memory.view nodes. Only static nodes that are memory planned are converted. Not all static nodes are memory planned in ExecuTorch. For example, there is an option to turn off memory planning for input nodes, and outputs from some higher order ops like cond are not memory planned. Which nodes are memory planned is not easily available, and I did not try to cover all cases of nodes that can be converted. We can expand this list over time. In the third diff (D54827438), I implement the actual view_copy elimination. In the ExecutorchBackendConfig, there is a new option remove_static_view_copy. If remove_static_view_copy = True, the memory planning passes are [NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass]; if remove_static_view_copy = False, the memory planning passes are [config.to_out_var_pass, config.memory_planning_pass] (state today). Let's look at the flow when remove_static_view_copy = True: NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass. The first two steps are the just the first and second diff described above. In config.to_out_var_pass, the memory.view nodes are skipped. In config.memory_planning_pass, when a spec is requested for a memory.view node (e.g., to update the lifetime), we return the spec of its base. Returning the spec for the base means that whenever we see a memory.view node, we actually update the lifetime of the base to cover it. Moreover, the memory.view node's special _MemoryViewSpec sees this update reflected. (Note that an exception would be thrown if we kept the usual flow and returned the spec for the memory.view node. This is because the special _MemoryViewSpec is immutable and would not allow the memory_planning_pass to update its lifetime.) Finally, during emission the memory.view is emitted as an evalue. There are two more diffs on the stack D54866523 and D54866539. The first of these replaces the old RemoveRedundantViewCopy pass with a NormalizeViewCopyBasePass + dead code elimination. The second converts view-like ops (squeeze, unsqueeze, slice) to view ops when safe to do so to take advantage of the view_copy elimination. Reviewed By: larryliu0820 Differential Revision: D54827305
ba50f16
to
6f1239b
Compare
This pull request was exported from Phabricator. Differential Revision: D54827305 |
This pull request has been merged in 6c3daa0. |
Summary: Pull Request resolved: pytorch#2462 Design: https://docs.google.com/document/d/1l9x925EOrE8mHFJdRCC59nBJXyqBdnoeK-EgNQScXD0/edit#heading=h.kocb2mvchnib This stack replaces view_copy nodes with memory.view nodes. In the first diff (D54816555), I write a pass to normalize view_copy nodes by making their base point to the upstream non-view node. This means if we have something like op -> view_copy1 -> view_copy2, then after normalization, both view copies will point to op in their base (assuming op is not a view node). Note that this pass combined with dead-code elimination removes redundant view copies. This is because a redundant view copy will have no users have this pass. In the second diff (D54827305), I write a pass to convert view_copy nodes to memory.view nodes. A memory.view is similar to torch.ops.aten.view.default, but it is its own function so that we can handle it specially during memory planning and emission. A memory.view node has a special TensorSpec of type _MemoryViewSpec. This spec is immutable and dynamically looks up non-size related fields from its base's TensorSpec. Because it is immutable, fields on a _MemoryViewSpec cannot be set, but if a field is updated on the base spec, this update is reflected in the memory.view node's _MemoryViewSpec. Not all view_copy nodes are converted to memory.view nodes. Only static nodes that are memory planned are converted. Not all static nodes are memory planned in ExecuTorch. For example, there is an option to turn off memory planning for input nodes, and outputs from some higher order ops like cond are not memory planned. Which nodes are memory planned is not easily available, and I did not try to cover all cases of nodes that can be converted. We can expand this list over time. In the third diff (D54827438), I implement the actual view_copy elimination. In the ExecutorchBackendConfig, there is a new option remove_static_view_copy. If remove_static_view_copy = True, the memory planning passes are [NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass]; if remove_static_view_copy = False, the memory planning passes are [config.to_out_var_pass, config.memory_planning_pass] (state today). Let's look at the flow when remove_static_view_copy = True: NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass. The first two steps are the just the first and second diff described above. In config.to_out_var_pass, the memory.view nodes are skipped. In config.memory_planning_pass, when a spec is requested for a memory.view node (e.g., to update the lifetime), we return the spec of its base. Returning the spec for the base means that whenever we see a memory.view node, we actually update the lifetime of the base to cover it. Moreover, the memory.view node's special _MemoryViewSpec sees this update reflected. (Note that an exception would be thrown if we kept the usual flow and returned the spec for the memory.view node. This is because the special _MemoryViewSpec is immutable and would not allow the memory_planning_pass to update its lifetime.) Finally, during emission the memory.view is emitted as an evalue. There are two more diffs on the stack D54866523 and D54866539. The first of these replaces the old RemoveRedundantViewCopy pass with a NormalizeViewCopyBasePass + dead code elimination. The second converts view-like ops (squeeze, unsqueeze, slice) to view ops when safe to do so to take advantage of the view_copy elimination. bypass-github-export-checks Reviewed By: JacobSzwejbka, larryliu0820, cbilgin Differential Revision: D54827305 fbshipit-source-id: 4c82c8d75983f5a3bc22d32a379db074037b7bff
Summary:
Design: https://docs.google.com/document/d/1l9x925EOrE8mHFJdRCC59nBJXyqBdnoeK-EgNQScXD0/edit#heading=h.kocb2mvchnib
This stack replaces view_copy nodes with memory.view nodes.
In the first diff (D54816555), I write a pass to normalize view_copy nodes by making their base point to the upstream non-view node. This means if we have something like op -> view_copy1 -> view_copy2, then after normalization, both view copies will point to op in their base (assuming op is not a view node). Note that this pass combined with dead-code elimination removes redundant view copies. This is because a redundant view copy will have no users have this pass.
In the second diff (D54827305), I write a pass to convert view_copy nodes to memory.view nodes. A memory.view is similar to torch.ops.aten.view.default, but it is its own function so that we can handle it specially during memory planning and emission. A memory.view node has a special TensorSpec of type _MemoryViewSpec. This spec is immutable and dynamically looks up non-size related fields from its base's TensorSpec. Because it is immutable, fields on a _MemoryViewSpec cannot be set, but if a field is updated on the base spec, this update is reflected in the memory.view node's _MemoryViewSpec.
Not all view_copy nodes are converted to memory.view nodes. Only static nodes that are memory planned are converted. Not all static nodes are memory planned in ExecuTorch. For example, there is an option to turn off memory planning for input nodes, and outputs from some higher order ops like cond are not memory planned. Which nodes are memory planned is not easily available, and I did not try to cover all cases of nodes that can be converted. We can expand this list over time.
In the third diff (D54827438), I implement the actual view_copy elimination. In the ExecutorchBackendConfig, there is a new option remove_static_view_copy. If remove_static_view_copy = True, the memory planning passes are [NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass]; if remove_static_view_copy = False, the memory planning passes are [config.to_out_var_pass, config.memory_planning_pass] (state today).
Let's look at the flow when remove_static_view_copy = True: NormalizeViewCopyBasePass(), ReplaceViewCopyWithMemoryViewPass(), config.to_out_var_pass, config.memory_planning_pass.
The first two steps are the just the first and second diff described above.
In config.to_out_var_pass, the memory.view nodes are skipped.
In config.memory_planning_pass, when a spec is requested for a memory.view node (e.g., to update the lifetime), we return the spec of its base. Returning the spec for the base means that whenever we see a memory.view node, we actually update the lifetime of the base to cover it. Moreover, the memory.view node's special _MemoryViewSpec sees this update reflected. (Note that an exception would be thrown if we kept the usual flow and returned the spec for the memory.view node. This is because the special _MemoryViewSpec is immutable and would not allow the memory_planning_pass to update its lifetime.)
Finally, during emission the memory.view is emitted as an evalue.
There are two more diffs on the stack D54866523 and D54866539. The first of these replaces the old RemoveRedundantViewCopy pass with a NormalizeViewCopyBasePass + dead code elimination. The second converts view-like ops (squeeze, unsqueeze, slice) to view ops when safe to do so to take advantage of the view_copy elimination.
Differential Revision: D54827305