Skip to content

Qualcomm AI Engine Direct - wav2letter e2e example #5924

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Nov 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 38 additions & 0 deletions backends/qualcomm/tests/test_qnn_delegate.py
Original file line number Diff line number Diff line change
Expand Up @@ -2681,6 +2681,44 @@ def test_ptq_mobilebert(self):
for k, v in cpu.items():
self.assertLessEqual(abs(v[0] - htp[k][0]), 5)

def test_wav2letter(self):
if not self.required_envs([self.pretrained_weight]):
self.skipTest("missing required envs")

cmds = [
"python",
f"{self.executorch_root}/examples/qualcomm/scripts/wav2letter.py",
"--artifact",
self.artifact_dir,
"--build_folder",
self.build_folder,
"--device",
self.device,
"--model",
self.model,
"--pretrained_weight",
self.pretrained_weight,
"--ip",
self.ip,
"--port",
str(self.port),
]
if self.host:
cmds.extend(["--host", self.host])
if self.shared_buffer:
cmds.extend(["--shared_buffer"])

p = subprocess.Popen(cmds, stdout=subprocess.DEVNULL)
with Listener((self.ip, self.port)) as listener:
conn = listener.accept()
p.communicate()
msg = json.loads(conn.recv())
if "Error" in msg:
self.fail(msg["Error"])
else:
self.assertLessEqual(msg["wer"], 0.5)
self.assertLessEqual(msg["cer"], 0.25)

def test_export_example(self):
if not self.required_envs([self.model_name]):
self.skipTest("missing required envs")
Expand Down
2 changes: 2 additions & 0 deletions examples/qualcomm/scripts/install_requirement.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
pip install soundfile
pip install torchmetrics
226 changes: 226 additions & 0 deletions examples/qualcomm/scripts/wav2letter.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,226 @@
# Copyright (c) Qualcomm Innovation Center, Inc.
# All rights reserved
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import json
import os
import sys
from multiprocessing.connection import Client

import numpy as np

import torch
from executorch.backends.qualcomm.quantizer.quantizer import QuantDtype
from executorch.examples.models.wav2letter import Wav2LetterModel
from executorch.examples.qualcomm.utils import (
build_executorch_binary,
make_output_dir,
parse_skip_delegation_node,
setup_common_args_and_variables,
SimpleADB,
)


class Conv2D(torch.nn.Module):
def __init__(self, stride, padding, weight, bias=None):
super().__init__()
use_bias = bias is not None
self.conv = torch.nn.Conv2d(
in_channels=weight.shape[1],
out_channels=weight.shape[0],
kernel_size=[weight.shape[2], 1],
stride=[*stride, 1],
padding=[*padding, 0],
bias=use_bias,
)
self.conv.weight = torch.nn.Parameter(weight.unsqueeze(-1))
if use_bias:
self.conv.bias = torch.nn.Parameter(bias)

def forward(self, x):
return self.conv(x)


def get_dataset(data_size, artifact_dir):
from torch.utils.data import DataLoader
from torchaudio.datasets import LIBRISPEECH

def collate_fun(batch):
waves, labels = [], []

for wave, _, text, *_ in batch:
waves.append(wave.squeeze(0))
labels.append(text)
# need padding here for static ouput shape
waves = torch.nn.utils.rnn.pad_sequence(waves, batch_first=True)
return waves, labels

dataset = LIBRISPEECH(artifact_dir, url="test-clean", download=True)
data_loader = DataLoader(
dataset=dataset,
batch_size=data_size,
shuffle=True,
collate_fn=lambda x: collate_fun(x),
)
# prepare input data
inputs, targets, input_list = [], [], ""
for wave, label in data_loader:
for index in range(data_size):
# reshape input tensor to NCHW
inputs.append((wave[index].reshape(1, 1, -1, 1),))
targets.append(label[index])
input_list += f"input_{index}_0.raw\n"
# here we only take first batch, i.e. 'data_size' tensors
break

return inputs, targets, input_list


def eval_metric(pred, target_str):
from torchmetrics.text import CharErrorRate, WordErrorRate

def parse(ids):
vocab = " abcdefghijklmnopqrstuvwxyz'*"
return ["".join([vocab[c] for c in id]).replace("*", "").upper() for id in ids]

pred_str = parse(
[
torch.unique_consecutive(pred[i, :, :].argmax(0))
for i in range(pred.shape[0])
]
)
wer, cer = WordErrorRate(), CharErrorRate()
return wer(pred_str, target_str), cer(pred_str, target_str)


def main(args):
skip_node_id_set, skip_node_op_set = parse_skip_delegation_node(args)

# ensure the working directory exist
os.makedirs(args.artifact, exist_ok=True)

if not args.compile_only and args.device is None:
raise RuntimeError(
"device serial is required if not compile only. "
"Please specify a device serial by -s/--device argument."
)

instance = Wav2LetterModel()
# target labels " abcdefghijklmnopqrstuvwxyz'*"
instance.vocab_size = 29
model = instance.get_eager_model().eval()
model.load_state_dict(torch.load(args.pretrained_weight, weights_only=True))

# convert conv1d to conv2d in nn.Module level will only introduce 2 permute
# nodes around input & output, which is more quantization friendly.
for i in range(len(model.acoustic_model)):
for j in range(len(model.acoustic_model[i])):
module = model.acoustic_model[i][j]
if isinstance(module, torch.nn.Conv1d):
model.acoustic_model[i][j] = Conv2D(
stride=module.stride,
padding=module.padding,
weight=module.weight,
bias=module.bias,
)

# retrieve dataset, will take some time to download
data_num = 100
inputs, targets, input_list = get_dataset(
data_size=data_num, artifact_dir=args.artifact
)
pte_filename = "w2l_qnn"
build_executorch_binary(
model,
inputs[0],
args.model,
f"{args.artifact}/{pte_filename}",
inputs,
skip_node_id_set=skip_node_id_set,
skip_node_op_set=skip_node_op_set,
quant_dtype=QuantDtype.use_8a8w,
shared_buffer=args.shared_buffer,
)

if args.compile_only:
sys.exit(0)

adb = SimpleADB(
qnn_sdk=os.getenv("QNN_SDK_ROOT"),
build_path=f"{args.build_folder}",
pte_path=f"{args.artifact}/{pte_filename}.pte",
workspace=f"/data/local/tmp/executorch/{pte_filename}",
device_id=args.device,
host_id=args.host,
soc_model=args.model,
shared_buffer=args.shared_buffer,
)
adb.push(inputs=inputs, input_list=input_list)
adb.execute()

# collect output data
output_data_folder = f"{args.artifact}/outputs"
make_output_dir(output_data_folder)
adb.pull(output_path=args.artifact)

predictions = []
for i in range(data_num):
predictions.append(
np.fromfile(
os.path.join(output_data_folder, f"output_{i}_0.raw"), dtype=np.float32
)
)

# evaluate metrics
wer, cer = 0, 0
for i, pred in enumerate(predictions):
pred = torch.from_numpy(pred).reshape(1, instance.vocab_size, -1)
wer_eval, cer_eval = eval_metric(pred, targets[i])
wer += wer_eval
cer += cer_eval

if args.ip and args.port != -1:
with Client((args.ip, args.port)) as conn:
conn.send(
json.dumps({"wer": wer.item() / data_num, "cer": cer.item() / data_num})
)
else:
print(f"wer: {wer / data_num}\ncer: {cer / data_num}")


if __name__ == "__main__":
parser = setup_common_args_and_variables()

parser.add_argument(
"-a",
"--artifact",
help="path for storing generated artifacts by this example. "
"Default ./wav2letter",
default="./wav2letter",
type=str,
)

parser.add_argument(
"-p",
"--pretrained_weight",
help=(
"Location of pretrained weight, please download via "
"https://github.com/nipponjo/wav2letter-ctc-pytorch/tree/main?tab=readme-ov-file#wav2letter-ctc-pytorch"
" for torchaudio.models.Wav2Letter version"
),
default=None,
type=str,
required=True,
)

args = parser.parse_args()
try:
main(args)
except Exception as e:
if args.ip and args.port != -1:
with Client((args.ip, args.port)) as conn:
conn.send(json.dumps({"Error": str(e)}))
else:
raise Exception(e)
Loading