Skip to content

Migrate to training IR in executorch [2/2] #5950

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions backends/apple/coreml/test/test_coreml_quantizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,12 +15,12 @@
)

from executorch.backends.apple.coreml.quantizer import CoreMLQuantizer
from torch._export import capture_pre_autograd_graph
from torch.ao.quantization.quantize_pt2e import (
convert_pt2e,
prepare_pt2e,
prepare_qat_pt2e,
)
from torch.export import export_for_training


class TestCoreMLQuantizer:
Expand All @@ -32,7 +32,7 @@ def quantize_and_compare(
) -> None:
assert quantization_type in {"PTQ", "QAT"}

pre_autograd_aten_dialect = capture_pre_autograd_graph(model, example_inputs)
pre_autograd_aten_dialect = export_for_training(model, example_inputs).module()

quantization_config = LinearQuantizerConfig.from_dict(
{
Expand Down
4 changes: 2 additions & 2 deletions backends/apple/mps/test/test_mps_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -209,9 +209,9 @@ def lower_module_and_test_output(

expected_output = model(*sample_inputs)

model = torch._export.capture_pre_autograd_graph(
model = torch.export.export_for_training(
model, sample_inputs, dynamic_shapes=dynamic_shapes
)
).module()

edge_program = export_to_edge(
model,
Expand Down
6 changes: 3 additions & 3 deletions backends/mediatek/quantizer/annotator.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,6 @@
from typing import Callable, List

import torch

from torch._export import capture_pre_autograd_graph
from torch._ops import OpOverload
from torch._subclasses import FakeTensor

Expand All @@ -17,6 +15,8 @@
_annotate_input_qspec_map,
_annotate_output_qspec,
)

from torch.export import export_for_training
from torch.fx import Graph, Node
from torch.fx.passes.utils.matcher_with_name_node_map_utils import (
SubgraphMatcherWithNameNodeMap,
Expand Down Expand Up @@ -159,7 +159,7 @@ def forward(self, x):
return norm, {}

for pattern_cls in (ExecuTorchPattern, MTKPattern):
pattern_gm = capture_pre_autograd_graph(pattern_cls(), (torch.randn(3, 3),))
pattern_gm = export_for_training(pattern_cls(), (torch.randn(3, 3),)).module()
matcher = SubgraphMatcherWithNameNodeMap(
pattern_gm, ignore_literals=True, remove_overlapping_matches=False
)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,6 @@
import unittest

import torch
import torch._export as export
from executorch.backends.transforms.duplicate_dynamic_quant_chain import (
DuplicateDynamicQuantChainPass,
)
Expand Down Expand Up @@ -59,10 +58,10 @@ def _test_duplicate_chain(

# program capture
m = copy.deepcopy(m_eager)
m = export.capture_pre_autograd_graph(
m = torch.export.export_for_training(
m,
example_inputs,
)
).module()

m = prepare_pt2e(m, quantizer)
# Calibrate
Expand Down
7 changes: 4 additions & 3 deletions examples/llm_manual/export_nanogpt.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,8 +15,7 @@
from executorch.exir import to_edge

from model import GPT
from torch._export import capture_pre_autograd_graph
from torch.export import export
from torch.export import export, export_for_training
from torch.nn.attention import sdpa_kernel, SDPBackend

model = GPT.from_pretrained("gpt2") # use gpt2 weight as pretrained weight
Expand All @@ -28,7 +27,9 @@
# Trace the model, converting it to a portable intermediate representation.
# The torch.no_grad() call tells PyTorch to exclude training-specific logic.
with sdpa_kernel([SDPBackend.MATH]), torch.no_grad():
m = capture_pre_autograd_graph(model, example_inputs, dynamic_shapes=dynamic_shape)
m = export_for_training(
model, example_inputs, dynamic_shapes=dynamic_shape
).module()
traced_model = export(m, example_inputs, dynamic_shapes=dynamic_shape)

# Convert the model into a runnable ExecuTorch program.
Expand Down
2 changes: 1 addition & 1 deletion examples/mediatek/aot_utils/oss_utils/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ def build_executorch_binary(
if quant_dtype not in Precision:
raise AssertionError(f"No support for Precision {quant_dtype}.")

captured_model = torch._export.capture_pre_autograd_graph(model, inputs)
captured_model = torch.export.export_for_training(model, inputs).module()
annotated_model = prepare_pt2e(captured_model, quantizer)
print("Quantizing the model...")
# calibration
Expand Down
4 changes: 2 additions & 2 deletions examples/mediatek/model_export_scripts/llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -318,9 +318,9 @@ def export_to_et_ir(
max_num_token, max_cache_size, True
)
print("Getting pre autograd ATen Dialect Graph")
pre_autograd_aten_dialect = torch._export.capture_pre_autograd_graph(
pre_autograd_aten_dialect = torch.export.export_for_training(
model, example_inputs, dynamic_shapes=dynamic_shapes
) # NOTE: Will be replaced with export
).module() # NOTE: Will be replaced with export
quantizer = NeuropilotQuantizer()
quantizer.setup_precision(getattr(Precision, precision))
prepared_graph = prepare_pt2e(pre_autograd_aten_dialect, quantizer)
Expand Down
4 changes: 2 additions & 2 deletions exir/tests/test_quantization.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,9 +51,9 @@ def test_resnet(self) -> None:
m = torchvision.models.resnet18().eval()
m_copy = copy.deepcopy(m)
# program capture
m = torch._export.capture_pre_autograd_graph(
m = torch.export.export_for_training(
m, copy.deepcopy(example_inputs)
)
).module()

quantizer = XNNPACKQuantizer()
operator_config = get_symmetric_quantization_config(is_per_channel=True)
Expand Down
6 changes: 3 additions & 3 deletions extension/llm/export/builder.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,10 +29,10 @@

from executorch.extension.export_util.utils import export_to_edge, save_pte_program
from executorch.extension.llm.tokenizer.utils import get_tokenizer
from torch._export import capture_pre_autograd_graph
from torch.ao.quantization.quantize_pt2e import convert_pt2e, prepare_pt2e
from torch.ao.quantization.quantizer import Quantizer
from torch.ao.quantization.quantizer.composable_quantizer import ComposableQuantizer
from torch.export import export_for_training
from torch.nn.attention import SDPBackend

FORMAT = "[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s"
Expand Down Expand Up @@ -190,9 +190,9 @@ def capture_pre_autograd_graph(self) -> "LLMEdgeManager":
strict=True,
).module()
else:
self.pre_autograd_graph_module = capture_pre_autograd_graph(
self.pre_autograd_graph_module = export_for_training(
self.model, self.example_inputs, dynamic_shapes=dynamic_shape
)
).module()

return self

Expand Down
Loading