Skip to content

Added Cadence memory planning example #7418

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Dec 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions backends/cadence/aot/TARGETS
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@ python_library(
":utils",
":ops_registrations",
":replace_ops",
":memory_planning",
"//caffe2:torch",
"//executorch/backends/cadence/aot/quantizer:fusion_pass",
"//executorch/backends/cadence/aot/quantizer:quantizer",
Expand Down
48 changes: 46 additions & 2 deletions backends/cadence/aot/compiler.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,22 +12,34 @@

import executorch.backends.cadence.aot.ops_registrations # noqa
import torch
from executorch.backends.cadence.aot.memory_planning import (
CadenceMemoryPlanning,
print_memory_planning_info,
)
from executorch.backends.cadence.aot.quantizer.fusion_pass import QuantFusion
from executorch.backends.cadence.aot.quantizer.quantizer import CadenceQuantizer

from executorch.backends.cadence.aot.replace_ops import ReplaceSafeSoftmaxWithSoftmax
from executorch.backends.cadence.aot.utils import model_gm_has_SDPA, model_is_quantized
from executorch.backends.cadence.aot.utils import (
get_default_memory_config,
MemoryConfig,
model_gm_has_SDPA,
model_is_quantized,
)
from executorch.backends.transforms.decompose_sdpa import (
DecomposeScaledDotProductAttention,
)
from executorch.devtools import generate_etrecord
from executorch.exir import (
EdgeCompileConfig,
EdgeProgramManager,
ExecutorchBackendConfig,
ExecutorchProgramManager,
to_edge,
)
from executorch.exir.pass_base import PassResult
from executorch.exir.passes import ToOutVarPass
from executorch.exir.passes.sym_shape_eval_pass import HintBasedSymShapeEvalPass
from torch._inductor.decomposition import remove_decompositions
from torch.ao.quantization.pt2e.export_utils import model_is_exported
from torch.ao.quantization.quantize_pt2e import convert_pt2e, prepare_pt2e
Expand Down Expand Up @@ -263,6 +275,10 @@ def export_to_executorch_gen_etrecord(
inputs: tuple[object, ...],
output_dir: Optional[str] = None,
opt_level: int = 1,
mem_algo: int = 0,
alloc_graph_input: bool = True,
alloc_graph_output: bool = True,
memory_config: Optional[MemoryConfig] = None,
dump_graphs: bool = False,
) -> ExecutorchProgramManager:
cadence_passes = get_cadence_passes(opt_level)
Expand All @@ -281,8 +297,36 @@ def export_to_executorch_gen_etrecord(
cadence_prog_manager.exported_program().graph_module,
)

if memory_config is None:
memory_config = get_default_memory_config()

memory_planning_pass = CadenceMemoryPlanning(
memory_config,
opt_level=opt_level,
mem_algo=mem_algo,
alloc_graph_input=alloc_graph_input,
alloc_graph_output=alloc_graph_output,
)

# Get executorch program after Cadence specific passes
exec_prog: ExecutorchProgramManager = cadence_prog_manager.to_executorch()
exec_prog: ExecutorchProgramManager = cadence_prog_manager.to_executorch(
ExecutorchBackendConfig(
memory_planning_pass=memory_planning_pass,
emit_stacktrace=False,
to_out_var_pass=ToOutVarPass(),
extract_delegate_segments=False,
sym_shape_eval_pass=HintBasedSymShapeEvalPass(),
),
)

print_memory_planning_info(
exec_prog,
memory_config,
opt_level,
alloc_graph_input,
alloc_graph_output,
)

if output_dir:
_gen_etrecord(edge_prog_manager, exec_prog, Path(output_dir))
else:
Expand Down