Skip to content

[Executorch][perf-ci] Fix perf ci #8374

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Feb 12, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions .github/workflows/android-perf.yml
Original file line number Diff line number Diff line change
Expand Up @@ -222,6 +222,7 @@ jobs:
--preq_mode 8da4w_output_8da8w \
--preq_group_size 32 \
--max_seq_length 2048 \
--max_context_length 2048 \
--output_name "${OUT_ET_MODEL_NAME}.pte" \
-kv \
-d fp32 \
Expand Down Expand Up @@ -253,6 +254,7 @@ jobs:
--xnnpack-extended-ops \
-d fp32 \
--max_seq_length 2048 \
--max_context_length 2048 \
--output_name "${OUT_ET_MODEL_NAME}.pte" \
--metadata '{"get_bos_id":128000, "get_eos_ids":[128009, 128001]}'
ls -lh "${OUT_ET_MODEL_NAME}.pte"
Expand Down
2 changes: 2 additions & 0 deletions .github/workflows/apple-perf.yml
Original file line number Diff line number Diff line change
Expand Up @@ -233,6 +233,7 @@ jobs:
--preq_mode 8da4w_output_8da8w \
--preq_group_size 32 \
--max_seq_length 2048 \
--max_context_length 2048 \
--output_name "${OUT_ET_MODEL_NAME}.pte" \
-kv \
-d fp32 \
Expand Down Expand Up @@ -264,6 +265,7 @@ jobs:
--xnnpack-extended-ops \
-d fp32 \
--max_seq_length 2048 \
--max_context_length 2048 \
--output_name "${OUT_ET_MODEL_NAME}.pte" \
--metadata '{"get_bos_id":128000, "get_eos_ids":[128009, 128001]}'
ls -lh "${OUT_ET_MODEL_NAME}.pte"
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -56,14 +56,14 @@ In this demo app, we support text-only inference with up-to-date Llama models an
Meta has released prequantized INT4 SpinQuant Llama 3.2 models that ExecuTorch supports on the XNNPACK backend.
* Export Llama model and generate .pte file as below:
```
python -m examples.models.llama.export_llama --model "llama3_2" --checkpoint <path-to-your-checkpoint.pth> --params <path-to-your-params.json> -kv --use_sdpa_with_kv_cache -X -d fp32 --xnnpack-extended-ops --preq_mode 8da4w_output_8da8w --preq_group_size 32 --max_seq_length 2048 --preq_embedding_quantize 8,0 --use_spin_quant native --metadata '{"get_bos_id":128000, "get_eos_ids":[128009, 128001]}' --output_name "llama3_2_spinquant.pte"
python -m examples.models.llama.export_llama --model "llama3_2" --checkpoint <path-to-your-checkpoint.pth> --params <path-to-your-params.json> -kv --use_sdpa_with_kv_cache -X -d fp32 --xnnpack-extended-ops --preq_mode 8da4w_output_8da8w --preq_group_size 32 --max_seq_length 2048 --max_context_length 2048 --preq_embedding_quantize 8,0 --use_spin_quant native --metadata '{"get_bos_id":128000, "get_eos_ids":[128009, 128001]}' --output_name "llama3_2_spinquant.pte"
```

### For Llama 3.2 1B and 3B QAT+LoRA models
Meta has released prequantized INT4 QAT+LoRA Llama 3.2 models that ExecuTorch supports on the XNNPACK backend.
* Export Llama model and generate .pte file as below:
```
python -m examples.models.llama.export_llama --model "llama3_2" --checkpoint <path-to-your-checkpoint.pth> --params <path-to-your-params.json> -qat -lora 16 -kv --use_sdpa_with_kv_cache -X -d fp32 --xnnpack-extended-ops --preq_mode 8da4w_output_8da8w --preq_group_size 32 --max_seq_length 2048 --preq_embedding_quantize 8,0 --metadata '{"get_bos_id":128000, "get_eos_ids":[128009, 128001]}' --output_name "llama3_2_qat_lora.pte"
python -m examples.models.llama.export_llama --model "llama3_2" --checkpoint <path-to-your-checkpoint.pth> --params <path-to-your-params.json> -qat -lora 16 -kv --use_sdpa_with_kv_cache -X -d fp32 --xnnpack-extended-ops --preq_mode 8da4w_output_8da8w --preq_group_size 32 --max_seq_length 2048 --max_context_length 2048--preq_embedding_quantize 8,0 --metadata '{"get_bos_id":128000, "get_eos_ids":[128009, 128001]}' --output_name "llama3_2_qat_lora.pte"
```

### For Llama 3.2 1B and 3B BF16 models
Expand All @@ -87,7 +87,7 @@ To safeguard your application, you can use our Llama Guard models for prompt cla
* We prepared this model using the following command

```
python -m examples.models.llama.export_llama --checkpoint <path-to-pruned-llama-guard-1b-checkpoint.pth> --params <path-to-your-params.json> -d fp32 -kv --use_sdpa_with_kv_cache --quantization_mode 8da4w --group_size 256 --xnnpack --max_seq_length 8193 --embedding-quantize 4,32 --metadata '{"get_bos_id":128000, "get_eos_ids":[128009, 128001]}' --output_prune_map <path-to-your-llama_guard-pruned-layers-map.json> --output_name="llama_guard_3_1b_pruned_xnnpack.pte"
python -m examples.models.llama.export_llama --checkpoint <path-to-pruned-llama-guard-1b-checkpoint.pth> --params <path-to-your-params.json> -d fp32 -kv --use_sdpa_with_kv_cache --quantization_mode 8da4w --group_size 256 --xnnpack --max_seq_length 8193 --max_context_length 8193 --embedding-quantize 4,32 --metadata '{"get_bos_id":128000, "get_eos_ids":[128009, 128001]}' --output_prune_map <path-to-your-llama_guard-pruned-layers-map.json> --output_name="llama_guard_3_1b_pruned_xnnpack.pte"
```


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -51,14 +51,14 @@ sh examples/models/llama/install_requirements.sh
Meta has released prequantized INT4 SpinQuant Llama 3.2 models that ExecuTorch supports on the XNNPACK backend.
* Export Llama model and generate .pte file as below:
```
python -m examples.models.llama.export_llama --model "llama3_2" --checkpoint <path-to-your-checkpoint.pth> --params <path-to-your-params.json> -kv --use_sdpa_with_kv_cache -X -d fp32 --xnnpack-extended-ops --preq_mode 8da4w_output_8da8w --preq_group_size 32 --max_seq_length 2048 --preq_embedding_quantize 8,0 --use_spin_quant native --metadata '{"get_bos_id":128000, "get_eos_ids":[128009, 128001]}' --output_name "llama3_2_spinquant.pte"
python -m examples.models.llama.export_llama --model "llama3_2" --checkpoint <path-to-your-checkpoint.pth> --params <path-to-your-params.json> -kv --use_sdpa_with_kv_cache -X -d fp32 --xnnpack-extended-ops --preq_mode 8da4w_output_8da8w --preq_group_size 32 --max_seq_length 2048 --max_context_length 2048 --preq_embedding_quantize 8,0 --use_spin_quant native --metadata '{"get_bos_id":128000, "get_eos_ids":[128009, 128001]}' --output_name "llama3_2_spinquant.pte"
```

### For Llama 3.2 1B and 3B QAT+LoRA models
Meta has released prequantized INT4 QAT+LoRA Llama 3.2 models that ExecuTorch supports on the XNNPACK backend.
* Export Llama model and generate .pte file as below:
```
python -m examples.models.llama.export_llama --model "llama3_2" --checkpoint <path-to-your-checkpoint.pth> --params <path-to-your-params.json> -qat -lora 16 -kv --use_sdpa_with_kv_cache -X -d fp32 --xnnpack-extended-ops --preq_mode 8da4w_output_8da8w --preq_group_size 32 --max_seq_length 2048 --preq_embedding_quantize 8,0 --metadata '{"get_bos_id":128000, "get_eos_ids":[128009, 128001]}' --output_name "llama3_2_qat_lora.pte"
python -m examples.models.llama.export_llama --model "llama3_2" --checkpoint <path-to-your-checkpoint.pth> --params <path-to-your-params.json> -qat -lora 16 -kv --use_sdpa_with_kv_cache -X -d fp32 --xnnpack-extended-ops --preq_mode 8da4w_output_8da8w --preq_group_size 32 --max_seq_length 2048 --max_context_length 2048 --preq_embedding_quantize 8,0 --metadata '{"get_bos_id":128000, "get_eos_ids":[128009, 128001]}' --output_name "llama3_2_qat_lora.pte"
```

### For Llama 3.2 1B and 3B BF16 models
Expand Down
4 changes: 4 additions & 0 deletions examples/models/llama/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -199,6 +199,7 @@ python -m examples.models.llama.export_llama \
--preq_mode 8da4w_output_8da8w \
--preq_group_size 32 \
--max_seq_length 2048 \
--max_context_length 2048 \
--output_name "llama3_2.pte" \
-kv \
-d fp32 \
Expand Down Expand Up @@ -230,6 +231,7 @@ python -m examples.models.llama.export_llama \
--xnnpack-extended-ops \
-d fp32 \
--max_seq_length 2048 \
--max_context_length 2048 \
--output_name "llama3_2.pte" \
--metadata '{"get_bos_id":128000, "get_eos_ids":[128009, 128001]}'
```
Expand Down Expand Up @@ -397,6 +399,7 @@ python -m examples.models.llama.eval_llama \
-kv \
-d <checkpoint dtype> \
--max_seq_len <max sequence length> \
--max_context_len <max context length> \
--limit <number of samples>
```

Expand All @@ -411,6 +414,7 @@ python -m examples.models.llama.eval_llama \
--tasks mmlu \
--num_fewshot 5 \
--max_seq_len <max sequence length>
--max_context_len <max context length>
```

See [Llama utils page](./UTILS.md) page for more advanced use-cases such as fine-tuning and running smaller models for educational purposes, and quick iteration and verification.
Expand Down
Loading