Skip to content

Arm: Support bitwise and, xor, and or ops #8518

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 18, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions backends/arm/operator_support/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
# pyre-unsafe

from . import ( # noqa
bitwise_support,
convolution_support,
pool_2d_support,
reduce_sum_support,
Expand Down
33 changes: 33 additions & 0 deletions backends/arm/operator_support/bitwise_support.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
# Copyright 2025 Arm Limited and/or its affiliates.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import torch.fx as fx
from executorch.backends.arm.operator_support.tosa_supported_operators import (
register_tosa_support_check,
SupportedTOSAOperatorCheck,
)
from executorch.backends.arm.tosa_specification import Tosa_0_80, TosaSpecification
from executorch.exir.dialects._ops import ops as exir_ops


@register_tosa_support_check
class BitwiseSupported(SupportedTOSAOperatorCheck):
targets = [
exir_ops.edge.aten.bitwise_and.Tensor,
exir_ops.edge.aten.bitwise_or.Tensor,
exir_ops.edge.aten.bitwise_xor.Tensor,
]

tosa_specs = [
TosaSpecification.create_from_string("TOSA-0.80+BI"),
TosaSpecification.create_from_string("TOSA-0.80+MI"),
]

def is_node_tosa_supported(self, node: fx.Node, tosa_spec: TosaSpecification):
# U55 case, Vela 4.2.0 (25.02 release)
if isinstance(tosa_spec, Tosa_0_80) and tosa_spec.is_U55_subset:
return False

return True
1 change: 1 addition & 0 deletions backends/arm/operators/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,4 +44,5 @@
op_transpose,
op_upsample_nearest2d,
op_view,
ops_binary,
)
51 changes: 51 additions & 0 deletions backends/arm/operators/ops_binary.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
# Copyright 2025 Arm Limited and/or its affiliates.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

# pyre-unsafe
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

drop this in the future?


from typing import List

import serializer.tosa_serializer as ts
import torch
import torch.fx

from executorch.backends.arm.operators.node_visitor import (
NodeVisitor,
register_node_visitor,
)
from executorch.backends.arm.tosa_mapping import TosaArg
from serializer.tosa_serializer import TosaOp


def binary_operator_factory(bw_target: str, tosa_op):
"""Creates and registers NodeVisitors for operators that have two inputs and map directly to a TOSA op."""

class BinaryOperator(NodeVisitor):
target = bw_target

def define_node(
self,
node: torch.fx.Node,
tosa_graph: ts.TosaSerializer,
inputs: List[TosaArg],
output: TosaArg,
) -> None:

if not (inputs[0].dtype == inputs[1].dtype == output.dtype):
raise ValueError(
"All inputs and outputs need same dtype."
f"Got {inputs[0].dtype=}, {inputs[1].dtype=}, {output.dtype=}."
)

tosa_graph.addOperator(
tosa_op, [inputs[0].name, inputs[1].name], [output.name]
)

register_node_visitor(BinaryOperator)


binary_operator_factory("aten.bitwise_and.Tensor", TosaOp.Op().BITWISE_AND)
binary_operator_factory("aten.bitwise_xor.Tensor", TosaOp.Op().BITWISE_XOR)
binary_operator_factory("aten.bitwise_or.Tensor", TosaOp.Op().BITWISE_OR)
195 changes: 195 additions & 0 deletions backends/arm/test/ops/test_bitwise.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,195 @@
# Copyright 2025 Arm Limited and/or its affiliates.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import unittest

from typing import Callable, NamedTuple, Tuple

import torch
from executorch.backends.arm.test import common, conftest
from executorch.backends.arm.test.tester.arm_tester import ArmTester
from parameterized import parameterized


class DataTuple(NamedTuple):
name: str
tensor1: torch.Tensor
tensor2: torch.Tensor


class OpTuple(NamedTuple):
name: str
operator: torch.nn.Module


class And(torch.nn.Module):
def forward(self, tensor1: torch.Tensor, tensor2: torch.Tensor):
return tensor1.bitwise_and(tensor2)


class Xor(torch.nn.Module):
def forward(self, tensor1: torch.Tensor, tensor2: torch.Tensor):
return tensor1.bitwise_xor(tensor2)


class Or(torch.nn.Module):
def forward(self, tensor1: torch.Tensor, tensor2: torch.Tensor):
return tensor1.bitwise_or(tensor2)


test_data_suite: list[DataTuple] = [
DataTuple(
"zeros",
torch.zeros(1, 10, 10, 10, dtype=torch.int32),
torch.zeros(1, 10, 10, 10, dtype=torch.int32),
),
DataTuple(
"ones",
torch.ones(10, 10, 10, dtype=torch.int8),
torch.ones(10, 10, 10, dtype=torch.int8),
),
DataTuple(
"rand_rank2",
torch.randint(-128, 127, (10, 10), dtype=torch.int8),
torch.randint(-128, 127, (10, 10), dtype=torch.int8),
),
DataTuple(
"rand_rank4",
torch.randint(-128, -127, (1, 10, 10, 10), dtype=torch.int8),
torch.randint(-128, 127, (1, 10, 10, 10), dtype=torch.int8),
),
]


ops: list[OpTuple] = [
OpTuple("and", And()),
OpTuple("or", Or()),
OpTuple("xor", Xor()),
]

full_test_suite = []
for op in ops:
for test_data in test_data_suite:
full_test_suite.append(
(
f"{op.name}_{test_data.name}",
op.operator,
test_data.tensor1,
test_data.tensor2,
)
)

del test_data
del ops


class TestBitwise(unittest.TestCase):

def _test_bitwise_tosa_MI_pipeline(
self, module: torch.nn.Module, test_data: Tuple[torch.tensor, torch.tensor]
):
(
ArmTester(
module,
example_inputs=test_data,
compile_spec=common.get_tosa_compile_spec("TOSA-0.80+MI"),
)
.export()
.to_edge_transform_and_lower()
.check_count({"torch.ops.higher_order.executorch_call_delegate": 1})
.to_executorch()
.run_method_and_compare_outputs(inputs=test_data)
)

def _test_bitwise_tosa_BI_pipeline(
self, module: torch.nn.Module, test_data: Tuple[torch.tensor, torch.tensor]
):
(
ArmTester(
module,
example_inputs=test_data,
compile_spec=common.get_tosa_compile_spec(
"TOSA-0.80+BI", custom_path="local_bin/bitwise"
),
)
.export()
.to_edge_transform_and_lower()
.check_count({"torch.ops.higher_order.executorch_call_delegate": 1})
.to_executorch()
.run_method_and_compare_outputs(inputs=test_data)
)

def _test_bitwise_tosa_u55_BI_pipeline(
self, module: torch.nn.Module, test_data: Tuple[torch.tensor]
):
# Tests that we don't delegate these ops since they are not supported on U55.
(
ArmTester(
module,
example_inputs=test_data,
compile_spec=common.get_u55_compile_spec(),
)
.export()
.to_edge_transform_and_lower()
.check_count({"torch.ops.higher_order.executorch_call_delegate": 0})
)

def _test_bitwise_tosa_u85_BI_pipeline(
self, module: torch.nn.Module, test_data: Tuple[torch.tensor]
):
tester = (
ArmTester(
module,
example_inputs=test_data,
compile_spec=common.get_u85_compile_spec(),
)
.export()
.to_edge_transform_and_lower()
.check_count({"torch.ops.higher_order.executorch_call_delegate": 1})
.to_executorch()
.serialize()
)
if conftest.is_option_enabled("corstone_fvp"):
tester.run_method_and_compare_outputs(inputs=test_data)

@parameterized.expand(full_test_suite)
def test_tosa_MI(
self,
test_name: str,
operator: Callable,
tensor1: torch.Tensor,
tensor2: torch.Tensor,
):
self._test_bitwise_tosa_MI_pipeline(operator, (tensor1, tensor2))

@parameterized.expand(full_test_suite)
def test_tosa_BI(
self,
test_name: str,
operator: Callable,
tensor1: torch.Tensor,
tensor2: torch.Tensor,
):
self._test_bitwise_tosa_BI_pipeline(operator, (tensor1, tensor2))

@parameterized.expand(full_test_suite)
def test_tosa_u55_BI(
self,
test_name: str,
operator: Callable,
tensor1: torch.Tensor,
tensor2: torch.Tensor,
):
self._test_bitwise_tosa_u55_BI_pipeline(operator, (tensor1, tensor2))

@parameterized.expand(full_test_suite)
def test_tosa_u85_BI(
self,
test_name: str,
operator: Callable,
tensor1: torch.Tensor,
tensor2: torch.Tensor,
):
self._test_bitwise_tosa_u85_BI_pipeline(operator, (tensor1, tensor2))
Loading