Skip to content

Enable quantized add #8584

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 20, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 44 additions & 0 deletions backends/cadence/aot/ops_registrations.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,6 +99,10 @@
"quantized_add(Tensor X, Tensor X_scale, Tensor X_zero_point, Tensor Y, Tensor Y_scale, "
"Tensor Y_zero_point, float out_scale, int out_zero_point) -> (Tensor Z)"
)
lib.define(
"quantized_add.per_tensor(Tensor X, float X_scale, int X_zero_point, Tensor Y, float Y_scale, "
"int Y_zero_point, float out_scale, int out_zero_point) -> (Tensor Z)"
)
lib.define(
"quantized_mul(Tensor X, Tensor X_scale, Tensor X_zero_point, Tensor Y, Tensor Y_scale, "
"Tensor Y_zero_point, float out_scale, int out_zero_point) -> (Tensor Z)"
Expand Down Expand Up @@ -175,6 +179,10 @@
"quantized_add.out(Tensor X, Tensor X_scale, Tensor X_zero_point, Tensor Y, Tensor Y_scale, "
"Tensor Y_zero_point, float out_scale, int out_zero_point, *, Tensor(a!) out) -> Tensor(a!)"
)
lib.define(
"quantized_add.per_tensor_out(Tensor X, float X_scale, int X_zero_point, Tensor Y, float Y_scale, "
"int Y_zero_point, float out_scale, int out_zero_point, *, Tensor(a!) out) -> Tensor(a!)"
)
lib.define(
"quantized_mul.out(Tensor X, Tensor X_scale, Tensor X_zero_point, Tensor Y, Tensor Y_scale, "
"Tensor Y_zero_point, float out_scale, int out_zero_point, *, Tensor(a!) out) -> Tensor(a!)"
Expand Down Expand Up @@ -290,6 +298,42 @@ def dequantize_per_tensor_meta(
return input.new_empty(input.size(), dtype=torch.float)


@register_fake("cadence::quantized_add")
def quantized_add_meta(
X: torch.Tensor,
X_scale: torch.Tensor,
X_zero_point: torch.Tensor,
Y: torch.Tensor,
Y_scale: torch.Tensor,
Y_zero_point: torch.Tensor,
out_scale: float,
out_zero_point: int,
) -> torch.Tensor:
out_size = X.size()
if list(X.size()) == [1]:
out_size = Y.size()

return X.new_empty(out_size, dtype=X.dtype)


@register_fake("cadence::quantized_add.per_tensor")
def quantized_add_per_tensor_meta(
X: torch.Tensor,
X_scale: float,
X_zero_point: int,
Y: torch.Tensor,
Y_scale: float,
Y_zero_point: int,
out_scale: float,
out_zero_point: int,
) -> torch.Tensor:
out_size = X.size()
if list(X.size()) == [1]:
out_size = Y.size()

return X.new_empty(out_size, dtype=X.dtype)


@register_fake("cadence::quantized_linear")
def quantized_linear_meta(
src: torch.Tensor,
Expand Down
53 changes: 51 additions & 2 deletions backends/cadence/aot/quantizer/fusion_pass.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
import torch
from executorch.backends.cadence.aot.quantizer.patterns import (
AddmmPattern,
AddPattern,
BmmPattern,
Conv1dPattern,
Conv2dPattern,
Expand Down Expand Up @@ -41,6 +42,47 @@
ReluPatterns = (ReluPattern0, ReluPattern1)


def get_args_and_kwargs_add(
graph_module: GraphModule,
inputs_inputs: List[fx.Node],
dequants_inputs: List[fx.Node],
quant_node: fx.Node,
) -> Tuple[Tuple[ArgsType, ...], Dict[str, ArgsType]]:
X_scale_ = graph_module.graph.call_function(
torch.ops.aten.full.default,
([1], dequants_inputs[0].args[1]),
{"dtype": torch.float},
)
X_zero_point_ = graph_module.graph.call_function(
torch.ops.aten.full.default,
([1], dequants_inputs[0].args[2]),
{"dtype": torch.int32},
)
Y_scale_ = graph_module.graph.call_function(
torch.ops.aten.full.default,
([1], dequants_inputs[1].args[1]),
{"dtype": torch.float},
)
Y_zero_point_ = graph_module.graph.call_function(
torch.ops.aten.full.default,
([1], dequants_inputs[1].args[2]),
{"dtype": torch.int32},
)
args = (
inputs_inputs[0],
X_scale_,
X_zero_point_,
inputs_inputs[1],
Y_scale_,
Y_zero_point_,
quant_node.args[1],
quant_node.args[2],
)

kwargs = {}
return args, kwargs


# Helper function to get the args and kwargs for the linear replacement op
def get_args_and_kwargs_linear(
graph_module: GraphModule,
Expand Down Expand Up @@ -339,7 +381,7 @@ def call(self, graph_module: fx.GraphModule) -> PassResult: # noqa: C901
)
for fused_partition in fused_partitions:
anchors = pattern.get_anchors(graph_module, fused_partition)
if not anchors:
if not anchors or anchors.empty:
continue
if any(self.is_fused(p.nodes) for p in fused_partition):
continue
Expand Down Expand Up @@ -385,7 +427,14 @@ def call(self, graph_module: fx.GraphModule) -> PassResult: # noqa: C901
inputs_inputs + weights_inputs + other_inputs + bias_inputs
)
kwargs = {}
if isinstance(pattern, (Conv1dPattern, Conv2dPattern)):
if isinstance(pattern, AddPattern):
args, kwargs = get_args_and_kwargs_add(
graph_module,
inputs_inputs,
dequants_inputs,
quant_node,
)
elif isinstance(pattern, (Conv1dPattern, Conv2dPattern)):
args, kwargs = get_args_and_kwargs_conv(
graph_module,
inputs_inputs,
Expand Down
33 changes: 33 additions & 0 deletions backends/cadence/aot/quantizer/patterns.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,7 @@ class PartitionAnchors:
output: List[Union[Tuple[fx.Node], Tuple[fx.Node, SharedQuantizationSpec]]] = field(
default_factory=list
)
empty: bool = False


class QuantizationPattern(ABC):
Expand Down Expand Up @@ -101,6 +102,38 @@ def replacement_op(self) -> OpOverload:
return torch.ops.cadence.quantized_linear


class AddPattern(QuantizationPattern):
def partition_types(self) -> List[OpOverload]:
return [torch.ops.aten.add.Tensor]

def get_anchors(
self, gm: fx.GraphModule, fused_partition: List[fx.GraphModule]
) -> PartitionAnchors:
# pyre-fixme[29]: `Union[BoundMethod[typing.Callable(torch._C.TensorBase.__ge...
add_node = fused_partition[0].nodes[-1]

# Bail if:
# - the add node is not a tensor add
# - the add node has kwargs (e.g. alpha)
is_tensor_add = isinstance(add_node.args[0], fx.Node) and isinstance(
add_node.args[1], fx.Node
)
if not is_tensor_add or len(add_node.kwargs) > 0:
return PartitionAnchors(
empty=True,
)

return PartitionAnchors(
inputs=[(add_node, 0), (add_node, 1)],
weights=[],
biases=[],
output=[(add_node,)],
)

def replacement_op(self) -> OpOverload:
return torch.ops.cadence.quantized_add.default


class BmmPattern(QuantizationPattern):
def partition_types(self) -> List[OpOverload]:
return [torch.ops.aten.bmm.default]
Expand Down
15 changes: 14 additions & 1 deletion backends/cadence/aot/quantizer/quantizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
import torch
from executorch.backends.cadence.aot.quantizer.patterns import (
AddmmPattern,
AddPattern,
BmmPattern,
Conv1dPattern,
Conv2dPattern,
Expand Down Expand Up @@ -109,7 +110,7 @@ def annotate(self, model: torch.fx.GraphModule) -> torch.fx.GraphModule:
continue

anchors = self.pattern.get_anchors(model, fused_partition)
if not anchors:
if not anchors or anchors.empty:
continue
if is_annotated(
[
Expand Down Expand Up @@ -211,3 +212,15 @@ def __init__(
self,
) -> None:
super().__init__([])


class CadenceWakeWordQuantizer(CadenceQuantizer):
"""
Quantizer for WakeWord, including add
"""

def __init__(self, quantizers: Optional[list[Quantizer]] = None) -> None:
if quantizers is None:
quantizers = get_cadence_default_quantizers()
quantizers.append(CadenceAtenQuantizer(AddPattern(), qconfig_A8uW8u))
super().__init__(quantizers)
4 changes: 4 additions & 0 deletions backends/cadence/aot/replace_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -1839,6 +1839,10 @@ class ReplaceSingleElementTensorArgumentsFromFullOpWithScalarPass(ExportPass):
replaced_scalar_args: dict[
EdgeOpOverloadPacket, tuple[EdgeOpOverload, Sequence[int]]
] = {
exir_ops.edge.cadence.quantized_add: (
exir_ops.edge.cadence.quantized_add.per_tensor,
[1, 2, 4, 5],
),
exir_ops.edge.cadence.quantized_conv: (
exir_ops.edge.cadence.quantized_conv.per_tensor,
[8, 9, 12, 13],
Expand Down
Loading