|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | + |
| 4 | +# This source code is licensed under the license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +import time |
| 8 | +import uuid |
| 9 | +from abc import ABC |
| 10 | +from dataclasses import dataclass |
| 11 | +from typing import Any, Dict, List, Optional |
| 12 | + |
| 13 | +from build.utils import device_sync |
| 14 | + |
| 15 | +from generate import Generator, GeneratorArgs |
| 16 | + |
| 17 | +"""Dataclasses defined around the objects used the OpenAI API Chat specification. |
| 18 | +
|
| 19 | +See https://platform.openai.com/docs/api-reference/chat for the full specification and details. |
| 20 | +""" |
| 21 | + |
| 22 | +# Message classes and associated objects - see the types of Messages under "Create Chat Completion >>> Request body >>> messages" |
| 23 | + |
| 24 | + |
| 25 | +@dataclass |
| 26 | +class _AbstractMessage(ABC): |
| 27 | + """Base class with common parameters for message types. |
| 28 | +
|
| 29 | + Each message type is associated with a role (one of "system", "user", "assistant" or "tool") and contains an |
| 30 | + optional content field. |
| 31 | +
|
| 32 | + See more details at https://platform.openai.com/docs/guides/text-generation/chat-completions-api . |
| 33 | + """ |
| 34 | + |
| 35 | + role: str |
| 36 | + content: Optional[str] = None |
| 37 | + |
| 38 | + |
| 39 | +@dataclass |
| 40 | +class SystemMessage(_AbstractMessage): |
| 41 | + role: str = "system" |
| 42 | + name: Optional[str] = None |
| 43 | + |
| 44 | + |
| 45 | +@dataclass |
| 46 | +class UserMessage(_AbstractMessage): |
| 47 | + role: str = "user" |
| 48 | + |
| 49 | + |
| 50 | +@dataclass |
| 51 | +class ToolMessage: |
| 52 | + tool_call_id: str |
| 53 | + type: str |
| 54 | + role: str = "tool" |
| 55 | + |
| 56 | + |
| 57 | +@dataclass |
| 58 | +class ToolCallFunction: |
| 59 | + name: str |
| 60 | + arguments: str |
| 61 | + |
| 62 | + |
| 63 | +@dataclass |
| 64 | +class ToolCall: |
| 65 | + id: str |
| 66 | + type: str |
| 67 | + function: ToolCallFunction |
| 68 | + |
| 69 | + |
| 70 | +@dataclass |
| 71 | +class AssistantMessage(_AbstractMessage): |
| 72 | + role: str = "assistant" |
| 73 | + name: Optional[str] = None |
| 74 | + tool_calls: Optional[List[ToolCall]] = None |
| 75 | + |
| 76 | + |
| 77 | +# Completion request and response types. |
| 78 | + |
| 79 | + |
| 80 | +@dataclass |
| 81 | +class CompletionRequest: |
| 82 | + """A full chat completion request. |
| 83 | +
|
| 84 | + See the "Create Chat Completion >>> Request body" section of the OpenAI API docs for more details. |
| 85 | + """ |
| 86 | + |
| 87 | + model: str |
| 88 | + prompt: str |
| 89 | + messages: Optional[List[_AbstractMessage]] |
| 90 | + frequency_penalty: float = 0.0 |
| 91 | + temperature: float = 0.0 |
| 92 | + stop: Optional[List[str]] = None |
| 93 | + echo: bool = False |
| 94 | + frequency_penalty: float = 0.0 |
| 95 | + guided_decode_json_schema: str = None |
| 96 | + guided_decode_json_schema_path: str = None |
| 97 | + n: int = 1 |
| 98 | + presence_penalty: float = 0 |
| 99 | + logit_bias: Optional[Dict[str, float]] = None |
| 100 | + logprobs: Optional[bool] = None |
| 101 | + top_logprobs: Optional[int] = None |
| 102 | + max_tokens: Optional[int] = None |
| 103 | + |
| 104 | + |
| 105 | +@dataclass |
| 106 | +class CompletionChoice: |
| 107 | + """A single choice in a chat completion response. |
| 108 | +
|
| 109 | + See the "The chat completion object >>> choices" section of the OpenAI API docs for more details. |
| 110 | + """ |
| 111 | + |
| 112 | + finish_reason: str |
| 113 | + index: int |
| 114 | + message: AssistantMessage |
| 115 | + logprobs: Optional[List[Any]] |
| 116 | + |
| 117 | + |
| 118 | +@dataclass |
| 119 | +class UsageStats: |
| 120 | + """Object representing a single choice in a chat completion response. |
| 121 | +
|
| 122 | + See the "The chat completion object >>> usage" section of the OpenAI API docs for more details. |
| 123 | + """ |
| 124 | + |
| 125 | + completion_tokens: int |
| 126 | + prompt_tokens: int |
| 127 | + total_tokens: int |
| 128 | + |
| 129 | + |
| 130 | +@dataclass |
| 131 | +class CompletionResponse: |
| 132 | + """A full chat completion response. |
| 133 | +
|
| 134 | + See the "The chat completion object" section of the OpenAI API docs for more details. |
| 135 | + """ |
| 136 | + |
| 137 | + id: str |
| 138 | + choices: List[CompletionChoice] |
| 139 | + created: int |
| 140 | + model: str |
| 141 | + system_fingerprint: str |
| 142 | + usage: UsageStats |
| 143 | + object: str = "chat.completion" |
| 144 | + service_tier: Optional[str] = None |
| 145 | + |
| 146 | + |
| 147 | +@dataclass |
| 148 | +class ChunkDelta: |
| 149 | + """Changes between the previous chunk emitted for a chunked completion response. |
| 150 | +
|
| 151 | + See the "The chat completion chunk object >>> choices >>> delta" section of the OpenAI API docs for more details. |
| 152 | + """ |
| 153 | + |
| 154 | + tool_calls: Optional[List[ToolCall]] |
| 155 | + role: Optional[str] |
| 156 | + content: Optional[str] |
| 157 | + |
| 158 | + |
| 159 | +@dataclass |
| 160 | +class CompletionChoiceChunk: |
| 161 | + """A single choice in a chat completion chunk response. |
| 162 | +
|
| 163 | + See the "The chat completion chunk object >>> choices" section of the OpenAI API docs for more details. |
| 164 | + """ |
| 165 | + |
| 166 | + delta: ChunkDelta |
| 167 | + index: int |
| 168 | + finish_reason: Optional[str] = None |
| 169 | + logprobs: Optional[List[Any]] = None |
| 170 | + |
| 171 | + |
| 172 | +@dataclass |
| 173 | +class CompletionResponseChunk: |
| 174 | + """Response chunk emitted during a chunked completion response. |
| 175 | +
|
| 176 | + See the "The chat completion chunk object" section of the OpenAI API docs for more details. |
| 177 | + """ |
| 178 | + |
| 179 | + id: str |
| 180 | + choices: List[CompletionChoiceChunk] |
| 181 | + created: int |
| 182 | + model: str |
| 183 | + system_fingerprint: str |
| 184 | + object: str = "chat.completion.chunk" |
| 185 | + service_tier: Optional[str] = None |
| 186 | + usage: Optional[UsageStats] = None |
| 187 | + |
| 188 | + |
| 189 | +class OpenAiApiGenerator(Generator): |
| 190 | + """A wrapper over the Generator class to interface with the OpenAI API. |
| 191 | +
|
| 192 | + Implements endpoints for completion requests, both chunked and non-chunked using the dataclasses |
| 193 | + defined above. |
| 194 | + """ |
| 195 | + |
| 196 | + def __init__(self, *args, **kwargs): |
| 197 | + """Initialize generator and parameters for maintaining context during generation. |
| 198 | +
|
| 199 | + See the docstring for the Generator class in generate.py for argument details. |
| 200 | + """ |
| 201 | + |
| 202 | + super().__init__(*args, **kwargs) |
| 203 | + self.start_pos = 0 |
| 204 | + self.max_seq_length = ( |
| 205 | + self.model.config.max_seq_length |
| 206 | + + self.speculative_builder_args.speculate_k |
| 207 | + + 1 |
| 208 | + if self.draft_model is not None |
| 209 | + else self.model.config.max_seq_length |
| 210 | + ) |
| 211 | + |
| 212 | + def completion(self, completion_request: CompletionRequest): |
| 213 | + """Handle a chat completion request and yield a chunked response. |
| 214 | +
|
| 215 | + Args: |
| 216 | + completion_request: Request object with prompt and other parameters. |
| 217 | +
|
| 218 | + Yields: |
| 219 | + CompletionResponseChunk objects in response to completion_request as tokens are generated. |
| 220 | +
|
| 221 | + """ |
| 222 | + device_sync(device=self.builder_args.device) |
| 223 | + |
| 224 | + # Initialize counters for chunk responses and encode the prompt. |
| 225 | + id = str(uuid.uuid4()) |
| 226 | + idx = 0 |
| 227 | + buffer = [] |
| 228 | + encoded = self.encode_tokens( |
| 229 | + completion_request.prompt, bos=True, device=self.builder_args.device |
| 230 | + ) |
| 231 | + generator_args = GeneratorArgs( |
| 232 | + completion_request.prompt, |
| 233 | + encoded_prompt=encoded, |
| 234 | + chat_mode=False, |
| 235 | + ) |
| 236 | + |
| 237 | + def callback(x, *, done_generating=False): |
| 238 | + return self._callback( |
| 239 | + x, |
| 240 | + buffer=buffer, |
| 241 | + done_generating=done_generating, |
| 242 | + ) |
| 243 | + |
| 244 | + # Process each token, metrics tuple yielded by Generator.generate. |
| 245 | + for y, _ in self.generate( |
| 246 | + self.model, |
| 247 | + encoded, |
| 248 | + generator_args.max_new_tokens, |
| 249 | + draft_model=self.draft_model, |
| 250 | + speculate_k=generator_args.speculate_k, |
| 251 | + chat_mode=generator_args.chat_mode, |
| 252 | + callback=callback, |
| 253 | + temperature=generator_args.temperature, |
| 254 | + top_k=generator_args.top_k, |
| 255 | + sequential_prefill=generator_args.sequential_prefill, |
| 256 | + start_pos=self.start_pos, |
| 257 | + max_seq_length=self.max_seq_length, |
| 258 | + ): |
| 259 | + # Decode the torch.Tensor token to a string and append to the buffer. Separate the sequences with a period token. |
| 260 | + content = "".join( |
| 261 | + self.tokenizer.decode([self.tokenizer.encode(".")[0]] + y.tolist())[1:] |
| 262 | + ) |
| 263 | + |
| 264 | + # Package the sequence into a CompletionChunkResponse and yield it. |
| 265 | + chunk_delta = ChunkDelta( |
| 266 | + role="assistant", |
| 267 | + content=content, |
| 268 | + tool_calls=None, |
| 269 | + ) |
| 270 | + choice_chunk = CompletionChoiceChunk( |
| 271 | + delta=chunk_delta, |
| 272 | + index=idx, |
| 273 | + ) |
| 274 | + chunk_response = CompletionResponseChunk( |
| 275 | + id=str(id), |
| 276 | + choices=[choice_chunk], |
| 277 | + created=int(time.time()), |
| 278 | + model=completion_request.model, |
| 279 | + system_fingerprint=uuid.UUID(int=uuid.getnode()), |
| 280 | + ) |
| 281 | + yield chunk_response |
| 282 | + self.start_pos += y.size(0) |
| 283 | + idx += 1 |
| 284 | + |
| 285 | + # Yield an ending chunk indicating the generation has completed. |
| 286 | + end_chunk = CompletionChoiceChunk(ChunkDelta(None, None, None), idx, "eos") |
| 287 | + |
| 288 | + yield CompletionResponseChunk( |
| 289 | + id=str(id), |
| 290 | + choices=[end_chunk], |
| 291 | + created=int(time.time()), |
| 292 | + model=completion_request.model, |
| 293 | + system_fingerprint=uuid.UUID(int=uuid.getnode()), |
| 294 | + ) |
| 295 | + |
| 296 | + def _callback(self, x, *, buffer, done_generating): |
| 297 | + period_id = self.tokenizer.encode(".")[0] |
| 298 | + buffer.append(self.tokenizer.decode([period_id] + x.tolist())[1:]) |
| 299 | + if ( |
| 300 | + self.is_llama3_model |
| 301 | + and x.item() == self.tokenizer.special_tokens["<|eot_id|>"] |
| 302 | + ): |
| 303 | + buffer = buffer[:-1] # drop the eot_id from the output buffer |
0 commit comments