Skip to content

DOC add pipeline examples #2240

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Jun 23, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion docs/examples.rst
Original file line number Diff line number Diff line change
Expand Up @@ -10,4 +10,5 @@ Examples
examples/asyncio_examples
examples/search_json_examples
examples/set_and_get_examples
examples/search_vector_similarity_examples
examples/search_vector_similarity_examples
examples/pipeline_examples
308 changes: 308 additions & 0 deletions docs/examples/pipeline_examples.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,308 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Pipeline examples\n",
"\n",
"This example show quickly how to use pipelines in `redis-py`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Checking that Redis is running"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import redis \n",
"\n",
"r = redis.Redis(decode_responses=True)\n",
"r.ping()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Simple example"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Creating a pipeline instance"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"pipe = r.pipeline()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Adding commands to the pipeline"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Pipeline<ConnectionPool<Connection<host=localhost,port=6379,db=0>>>"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pipe.set(\"a\", \"a value\")\n",
"pipe.set(\"b\", \"b value\")\n",
"\n",
"pipe.get(\"a\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Executing the pipeline"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[True, True, 'a value']"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pipe.execute()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The responses of the three commands are stored in a list. In the above example, the two first boolean indicates that the the `set` commands were successfull and the last element of the list is the result of the `get(\"a\")` comand."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Chained call\n",
"\n",
"The same result as above can be obtained in one line of code by chaining the opperations."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[True, True, 'a value']"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pipe = r.pipeline()\n",
"pipe.set(\"a\", \"a value\").set(\"b\", \"b value\").get(\"a\").execute()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Performance comparison\n",
"\n",
"Using pipelines can improve performance, for more informations, see [Redis documentation about pipelining](https://redis.io/docs/manual/pipelining/). Here is a simple comparison test of performance between basic and pipelined commands (we simply increment a value and measure the time taken by both method)."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"from datetime import datetime\n",
"\n",
"incr_value = 100000"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Without pipeline"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"r.set(\"incr_key\", \"0\")\n",
"\n",
"start = datetime.now()\n",
"\n",
"for _ in range(incr_value):\n",
" r.incr(\"incr_key\")\n",
"res_without_pipeline = r.get(\"incr_key\")\n",
"\n",
"time_without_pipeline = (datetime.now() - start).total_seconds()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Without pipeline\n",
"================\n",
"Time taken: 21.759733\n",
"Increment value: 100000\n"
]
}
],
"source": [
"print(\"Without pipeline\")\n",
"print(\"================\")\n",
"print(\"Time taken: \", time_without_pipeline)\n",
"print(\"Increment value: \", res_without_pipeline)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### With pipeline"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"r.set(\"incr_key\", \"0\")\n",
"\n",
"start = datetime.now()\n",
"\n",
"pipe = r.pipeline()\n",
"for _ in range(incr_value):\n",
" pipe.incr(\"incr_key\")\n",
"pipe.get(\"incr_key\")\n",
"res_with_pipeline = pipe.execute()[-1]\n",
"\n",
"time_with_pipeline = (datetime.now() - start).total_seconds()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"With pipeline\n",
"=============\n",
"Time taken: 2.357863\n",
"Increment value: 100000\n"
]
}
],
"source": [
"print(\"With pipeline\")\n",
"print(\"=============\")\n",
"print(\"Time taken: \", time_with_pipeline)\n",
"print(\"Increment value: \", res_with_pipeline)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Using pipelines provides the same result in much less time."
]
}
],
"metadata": {
"interpreter": {
"hash": "84048e2f8e89effc8610b2fb270e4858ef00e9403d223856d62b05266db287ca"
},
"kernelspec": {
"display_name": "Python 3.9.2 ('.venv': venv)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.2"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}