Skip to content

Document size/align of SIMD types #43

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Oct 18, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions beginners-guide.md
Original file line number Diff line number Diff line change
Expand Up @@ -65,3 +65,14 @@ This is no bug in Rust, or soundness hole in the type system. You just plain can
This is why the various Rust targets *don't* enable many CPU feature flags by default: requiring a more advanced CPU makes the final binary *less* portable.

So please select an appropriate CPU feature level when building your programs.

## Size, Alignment, and Unsafe Code

Most of the portable SIMD API is designed to allow the user to gloss over the details of different architectures and avoid using unsafe code. However, there are plenty of reasons to want to use unsafe code with these SIMD types, such as using an intrinsic function from `core::arch` to further accelerate particularly specialized SIMD operations on a given platform, while still using the portable API elsewhere. For these cases, there are some rules to keep in mind.

Fortunately, most SIMD types have a fairly predictable size. `i32x4` is bit-equivalent to `[i32; 4]` and so can be bitcast to it, e.g. using [`mem::transmute`], though the API usually offers a safe cast you can use instead.

However, this is not the same as alignment. Computer architectures generally prefer aligned accesses, especially when moving data between memory and vector registers, and while some support specialized operations that can bend the rules to help with this, unaligned access is still typically slow, or even undefined behavior. In addition, different architectures can require different alignments when interacting with their native SIMD types. For this reason, any `#[repr(simd)]` type has a non-portable alignment. If it is necessary to directly interact with the alignment of these types, it should be via [`mem::align_of`].

[`mem::transmute`]: https://doc.rust-lang.org/core/mem/fn.transmute.html
[`mem::align_of`]: https://doc.rust-lang.org/core/mem/fn.align_of.html