The main feature is about patches: it helps exporting pytorch models into ONNX, mostly designed for LLMs using dynamic caches.
with torch_export_patches(patch_transformers=True) as f:
ep = torch.export.export(model, args, kwargs=kwargs, dynamic_shapes=dynamic_shapes)
# ...
It also implements tools to investigate, validate exported models (ExportedProgramm, ONNXProgram, ...). See documentation of onnx-diagnostic and torch_export_patches.
git clone https://github.com/sdpython/onnx-diagnostic.git cd onnx-diagnostic pip install -e .
or
pip install onnx-diagnostic
Where to start to export a model
Torch Export
- Use DYNAMIC or AUTO when exporting if dynamic shapes has constraints
- Find and fix an export issue due to dynamic shapes
- Export with DynamicCache and guessed dynamic shapes
- Steel method forward to guess the dynamic shapes (with Tiny-LLM)
- Export Tiny-LLM with patches
Investigate ONNX models
- Find where a model is failing by running submodels
- Intermediate results with (ONNX) ReferenceEvaluator
- Intermediate results with onnxruntime
torch_export_patches
with torch_export_patches(patch_transformers=True) as f:
ep = torch.export.export(model, args, kwargs=kwargs, dynamic_shapes=dynamic_shapes)
# ...
torch_export_rewrite
with torch_export_rewrite(rewrite=[Model.forward]) as f:
ep = torch.export.export(model, args, kwargs=kwargs, dynamic_shapes=dynamic_shapes)
# ...
string_type
import torch
from onnx_diagnostic.helpers import string_type
inputs = (
torch.rand((3, 4), dtype=torch.float16),
[torch.rand((5, 6), dtype=torch.float16), torch.rand((5, 6, 7), dtype=torch.float16)],
)
# with shapes
print(string_type(inputs, with_shape=True))
>>> (T10s3x4,#2[T10s5x6,T10s5x6x7])
onnx_dtype_name
import onnx
from onnx_diagnostic.helpers.onnx_helper import onnx_dtype_name
itype = onnx.TensorProto.BFLOAT16
print(onnx_dtype_name(itype))
print(onnx_dtype_name(7))
>>> BFLOAT16 >>> INT64
max_diff
import torch
from onnx_diagnostic.helpers import max_diff
print(
max_diff(
(torch.Tensor([1, 2]), (torch.Tensor([1, 2]),)),
(torch.Tensor([1, 2]), (torch.Tensor([1, 2]),)),
)
)
>>> {"abs": 0.0, "rel": 0.0, "sum": 0.0, "n": 4.0, "dnan": 0.0}s
guess_dynamic_shapes
inputs = [
(torch.randn((5, 6)), torch.randn((1, 6))),
(torch.randn((7, 8)), torch.randn((1, 8))),
]
ds = ModelInputs(model, inputs).guess_dynamic_shapes(auto="dim")
print(ds)
>>> (({0: 'dim_0I0', 1: 'dim_0I1'}, {1: 'dim_1I1'}), {})