Skip to content

spences10/mcp-embedding-search

Repository files navigation

mcp-embedding-search

A Model Context Protocol (MCP) server that queries a Turso database containing embeddings and transcript segments. This tool allows users to search for relevant transcript segments by asking questions, without generating new embeddings.

Features

  • 🔍 Vector similarity search for transcript segments
  • 📊 Relevance scoring based on cosine similarity
  • 📝 Complete transcript metadata (episode title, timestamps)
  • ⚙️ Configurable search parameters (limit, minimum score)
  • 🔄 Efficient database connection pooling
  • 🛡️ Comprehensive error handling
  • 📈 Performance optimized for quick responses

Configuration

This server requires configuration through your MCP client. Here are examples for different environments:

Cline Configuration

Add this to your Cline MCP settings:

{
	"mcpServers": {
		"mcp-embedding-search": {
			"command": "node",
			"args": ["/path/to/mcp-embedding-search/dist/index.js"],
			"env": {
				"TURSO_URL": "your-turso-database-url",
				"TURSO_AUTH_TOKEN": "your-turso-auth-token"
			}
		}
	}
}

Claude Desktop Configuration

Add this to your Claude Desktop configuration:

{
	"mcpServers": {
		"mcp-embedding-search": {
			"command": "node",
			"args": ["/path/to/mcp-embedding-search/dist/index.js"],
			"env": {
				"TURSO_URL": "your-turso-database-url",
				"TURSO_AUTH_TOKEN": "your-turso-auth-token"
			}
		}
	}
}

API

The server implements one MCP tool:

search_embeddings

Search for relevant transcript segments using vector similarity.

Parameters:

  • question (string, required): The query text to search for
  • limit (number, optional): Number of results to return (default: 5, max: 50)
  • min_score (number, optional): Minimum similarity threshold (default: 0.5, range: 0-1)

Response format:

[
	{
		"episode_title": "Episode Title",
		"segment_text": "Transcript segment content...",
		"start_time": 123.45,
		"end_time": 167.89,
		"similarity": 0.85
	}
	// Additional results...
]

Database Schema

This tool expects a Turso database with the following schema:

CREATE TABLE embeddings (
  id INTEGER PRIMARY KEY AUTOINCREMENT,
  transcript_id INTEGER NOT NULL,
  embedding TEXT NOT NULL,
  FOREIGN KEY(transcript_id) REFERENCES transcripts(id)
);

CREATE TABLE transcripts (
  id INTEGER PRIMARY KEY AUTOINCREMENT,
  episode_title TEXT NOT NULL,
  segment_text TEXT NOT NULL,
  start_time REAL NOT NULL,
  end_time REAL NOT NULL
);

The embedding column should contain vector embeddings that can be used with the vector_distance_cos function.

Development

Setup

  1. Clone the repository
  2. Install dependencies:
npm install
  1. Build the project:
npm run build
  1. Run in development mode:
npm run dev

Publishing

The project uses changesets for version management. To publish:

  1. Create a changeset:
npm run changeset
  1. Version the package:
npm run version
  1. Publish to npm:
npm run release

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

MIT License - see the LICENSE file for details.

Acknowledgments

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •