A Model Context Protocol (MCP) server that queries a Turso database containing embeddings and transcript segments. This tool allows users to search for relevant transcript segments by asking questions, without generating new embeddings.
- 🔍 Vector similarity search for transcript segments
- 📊 Relevance scoring based on cosine similarity
- 📝 Complete transcript metadata (episode title, timestamps)
- ⚙️ Configurable search parameters (limit, minimum score)
- 🔄 Efficient database connection pooling
- 🛡️ Comprehensive error handling
- 📈 Performance optimized for quick responses
This server requires configuration through your MCP client. Here are examples for different environments:
Add this to your Cline MCP settings:
{
"mcpServers": {
"mcp-embedding-search": {
"command": "node",
"args": ["/path/to/mcp-embedding-search/dist/index.js"],
"env": {
"TURSO_URL": "your-turso-database-url",
"TURSO_AUTH_TOKEN": "your-turso-auth-token"
}
}
}
}
Add this to your Claude Desktop configuration:
{
"mcpServers": {
"mcp-embedding-search": {
"command": "node",
"args": ["/path/to/mcp-embedding-search/dist/index.js"],
"env": {
"TURSO_URL": "your-turso-database-url",
"TURSO_AUTH_TOKEN": "your-turso-auth-token"
}
}
}
}
The server implements one MCP tool:
Search for relevant transcript segments using vector similarity.
Parameters:
question
(string, required): The query text to search forlimit
(number, optional): Number of results to return (default: 5, max: 50)min_score
(number, optional): Minimum similarity threshold (default: 0.5, range: 0-1)
Response format:
[
{
"episode_title": "Episode Title",
"segment_text": "Transcript segment content...",
"start_time": 123.45,
"end_time": 167.89,
"similarity": 0.85
}
// Additional results...
]
This tool expects a Turso database with the following schema:
CREATE TABLE embeddings (
id INTEGER PRIMARY KEY AUTOINCREMENT,
transcript_id INTEGER NOT NULL,
embedding TEXT NOT NULL,
FOREIGN KEY(transcript_id) REFERENCES transcripts(id)
);
CREATE TABLE transcripts (
id INTEGER PRIMARY KEY AUTOINCREMENT,
episode_title TEXT NOT NULL,
segment_text TEXT NOT NULL,
start_time REAL NOT NULL,
end_time REAL NOT NULL
);
The embedding
column should contain vector embeddings that can be
used with the vector_distance_cos
function.
- Clone the repository
- Install dependencies:
npm install
- Build the project:
npm run build
- Run in development mode:
npm run dev
The project uses changesets for version management. To publish:
- Create a changeset:
npm run changeset
- Version the package:
npm run version
- Publish to npm:
npm run release
Contributions are welcome! Please feel free to submit a Pull Request.
MIT License - see the LICENSE file for details.
- Built on the Model Context Protocol
- Designed for efficient vector similarity search in transcript databases