Skip to content

Sync Fork from Upstream Repo #170

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 9 commits into from
Apr 8, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -206,3 +206,8 @@ repos:
files: ^pandas/core/
exclude: ^pandas/core/api\.py$
types: [python]
- id: no-bool-in-core-generic
name: Use bool_t instead of bool in pandas/core/generic.py
entry: python scripts/no_bool_in_generic.py
language: python
files: ^pandas/core/generic\.py$
19 changes: 19 additions & 0 deletions LICENSES/PYUPGRADE_LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
Copyright (c) 2017 Anthony Sottile

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
293 changes: 293 additions & 0 deletions pandas/_libs/algos.pyi
Original file line number Diff line number Diff line change
@@ -0,0 +1,293 @@
# Note: this covers algos.pyx and algos_common_helper but NOT algos_take_helper
from typing import Any

import numpy as np

class Infinity:
"""
Provide a positive Infinity comparison method for ranking.
"""
def __eq__(self, other) -> bool: ...
def __ne__(self, other) -> bool: ...
def __lt__(self, other) -> bool: ...
def __le__(self, other) -> bool: ...
def __gt__(self, other) -> bool: ...
def __ge__(self, other) -> bool: ...


class NegInfinity:
"""
Provide a negative Infinity comparison method for ranking.
"""
def __eq__(self, other) -> bool: ...
def __ne__(self, other) -> bool: ...
def __lt__(self, other) -> bool: ...
def __le__(self, other) -> bool: ...
def __gt__(self, other) -> bool: ...
def __ge__(self, other) -> bool: ...


def unique_deltas(
arr: np.ndarray, # const int64_t[:]
) -> np.ndarray: ... # np.ndarray[np.int64, ndim=1]


def is_lexsorted(list_of_arrays: list[np.ndarray]) -> bool: ...


def groupsort_indexer(
index: np.ndarray, # const int64_t[:]
ngroups: int,
) -> tuple[
np.ndarray, # ndarray[int64_t, ndim=1]
np.ndarray, # ndarray[int64_t, ndim=1]
]:
...


def kth_smallest(
a: np.ndarray, # numeric[:]
k: int,
) -> Any: ... # numeric


# ----------------------------------------------------------------------
# Pairwise correlation/covariance



def nancorr(
mat: np.ndarray, # const float64_t[:, :]
cov: bool = False,
minp=None,
) -> np.ndarray: # np.ndarray[float64_t, ndim=2]
...


def nancorr_spearman(
mat: np.ndarray, # ndarray[float64_t, ndim=2]
minp: int = 1,
) -> np.ndarray: # np.ndarray[np.float64, ndim=2]
...


def nancorr_kendall(
mat: np.ndarray, # ndarray[float64_t, ndim=2]
minp: int = 1,
) -> np.ndarray: # np.ndarray[float64, ndim=2]
...

# ----------------------------------------------------------------------

# ctypedef fused algos_t:
# float64_t
# float32_t
# object
# int64_t
# int32_t
# int16_t
# int8_t
# uint64_t
# uint32_t
# uint16_t
# uint8_t


def validate_limit(nobs: int | None, limit=None) -> int: ...


def pad(
old: np.ndarray, # ndarray[algos_t]
new: np.ndarray, # ndarray[algos_t]
limit=None,
) -> np.ndarray: ... # np.ndarray[np.intp, ndim=1]


def pad_inplace(
values: np.ndarray, # algos_t[:]
mask: np.ndarray, # uint8_t[:]
limit=None,
) -> None: ...


def pad_2d_inplace(
values: np.ndarray, # algos_t[:, :]
mask: np.ndarray, # const uint8_t[:, :]
limit=None,
) -> None:
...


def backfill(
old: np.ndarray, # ndarray[algos_t]
new: np.ndarray, # ndarray[algos_t]
limit=None,
) -> np.ndarray: # np.ndarray[np.intp, ndim=1]
...

def backfill_inplace(
values: np.ndarray, # algos_t[:]
mask: np.ndarray, # uint8_t[:]
limit=None,
) -> None: ...


def backfill_2d_inplace(
values: np.ndarray, # algos_t[:, :]
mask: np.ndarray, # const uint8_t[:, :]
limit=None,
) -> None: ...


def is_monotonic(
arr: np.ndarray, # ndarray[algos_t, ndim=1]
timelike: bool
) -> tuple[bool, bool, bool]:
...

# ----------------------------------------------------------------------
# rank_1d, rank_2d
# ----------------------------------------------------------------------

# ctypedef fused rank_t:
# object
# float64_t
# uint64_t
# int64_t


def rank_1d(
values: np.ndarray, # ndarray[rank_t, ndim=1]
labels: np.ndarray, # const int64_t[:]
is_datetimelike: bool = ...,
ties_method=...,
ascending: bool = ...,
pct: bool = ...,
na_option=...,
) -> np.ndarray: ... # np.ndarray[float64_t, ndim=1]


def rank_2d(
in_arr: np.ndarray, # ndarray[rank_t, ndim=2]
axis: int = ...,
is_datetimelike: bool = ...,
ties_method=...,
ascending: bool = ...,
na_option=...,
pct: bool = ...,
) -> np.ndarray: ... # np.ndarray[float64_t, ndim=1]


def diff_2d(
arr: np.ndarray, # ndarray[diff_t, ndim=2]
out: np.ndarray, # ndarray[out_t, ndim=2]
periods: int,
axis: int,
datetimelike: bool = ...,
) -> None: ...


def ensure_platform_int(arr: object) -> np.ndarray: ...

def ensure_object(arr: object) -> np.ndarray: ...

def ensure_float64(arr: object, copy=True) -> np.ndarray: ...

def ensure_float32(arr: object, copy=True) -> np.ndarray: ...

def ensure_int8(arr: object, copy=True) -> np.ndarray: ...

def ensure_int16(arr: object, copy=True) -> np.ndarray: ...

def ensure_int32(arr: object, copy=True) -> np.ndarray: ...

def ensure_int64(arr: object, copy=True) -> np.ndarray: ...

def ensure_uint8(arr: object, copy=True) -> np.ndarray: ...

def ensure_uint16(arr: object, copy=True) -> np.ndarray: ...

def ensure_uint32(arr: object, copy=True) -> np.ndarray: ...

def ensure_uint64(arr: object, copy=True) -> np.ndarray: ...


def take_1d_int8_int8(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int8_int32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int8_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int8_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int16_int16(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int16_int32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int16_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int16_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int32_int32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int32_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int32_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int64_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int64_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_float32_float32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_float32_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_float64_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_object_object(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_bool_bool(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_bool_object(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...

def take_2d_axis0_int8_int8(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int8_int32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int8_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int8_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int16_int16(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int16_int32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int16_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int16_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int32_int32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int32_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int32_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int64_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int64_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_float32_float32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_float32_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_float64_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_object_object(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_bool_bool(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_bool_object(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...

def take_2d_axis1_int8_int8(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int8_int32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int8_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int8_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int16_int16(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int16_int32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int16_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int16_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int32_int32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int32_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int32_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int64_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int64_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_float32_float32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_float32_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_float64_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_object_object(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_bool_bool(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_bool_object(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...

def take_2d_multi_int8_int8(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int8_int32(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int8_int64(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int8_float64(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int16_int16(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int16_int32(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int16_int64(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int16_float64(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int32_int32(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int32_int64(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int32_float64(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int64_float64(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_float32_float32(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_float32_float64(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_float64_float64(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_object_object(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_bool_bool(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_bool_object(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int64_int64(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
2 changes: 1 addition & 1 deletion pandas/_libs/algos.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -563,7 +563,7 @@ ctypedef fused algos_t:
uint8_t


def validate_limit(nobs: int, limit=None) -> int:
def validate_limit(nobs: int | None, limit=None) -> int:
"""
Check that the `limit` argument is a positive integer.

Expand Down
14 changes: 12 additions & 2 deletions pandas/_libs/internals.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,10 @@ from typing import (

import numpy as np

from pandas._typing import ArrayLike
from pandas._typing import (
ArrayLike,
T,
)

def slice_len(slc: slice, objlen: int = ...) -> int: ...

Expand Down Expand Up @@ -50,9 +53,16 @@ class BlockPlacement:
def append(self, others: list[BlockPlacement]) -> BlockPlacement: ...


class Block:
class SharedBlock:
_mgr_locs: BlockPlacement
ndim: int
values: ArrayLike

def __init__(self, values: ArrayLike, placement: BlockPlacement, ndim: int): ...

class NumpyBlock(SharedBlock):
values: np.ndarray
def getitem_block_index(self: T, slicer: slice) -> T: ...

class Block(SharedBlock):
...
Loading