forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 342
Implement Swift hidden frame recognizers #9179
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
adrian-prantl
merged 8 commits into
swiftlang:stable/20240723
from
adrian-prantl:126629381-swift
Sep 19, 2024
Merged
Implement Swift hidden frame recognizers #9179
adrian-prantl
merged 8 commits into
swiftlang:stable/20240723
from
adrian-prantl:126629381-swift
Sep 19, 2024
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
@swift-ci test |
…104523) Compilers and language runtimes often use helper functions that are fundamentally uninteresting when debugging anything but the compiler/runtime itself. This patch introduces a user-extensible mechanism that allows for these frames to be hidden from backtraces and automatically skipped over when navigating the stack with `up` and `down`. This does not affect the numbering of frames, so `f <N>` will still provide access to the hidden frames. The `bt` output will also print a hint that frames have been hidden. My primary motivation for this feature is to hide thunks in the Swift programming language, but I'm including an example recognizer for `std::function::operator()` that I wished for myself many times while debugging LLDB. rdar://126629381 Example output. (Yes, my proof-of-concept recognizer could hide even more frames if we had a method that returned the function name without the return type or I used something that isn't based off regex, but it's really only meant as an example). before: ``` (lldb) thread backtrace --filtered=false * thread swiftlang#1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1 * frame #0: 0x0000000100001f04 a.out`foo(x=1, y=1) at main.cpp:4:10 frame swiftlang#1: 0x0000000100003a00 a.out`decltype(std::declval<int (*&)(int, int)>()(std::declval<int>(), std::declval<int>())) std::__1::__invoke[abi:se200000]<int (*&)(int, int), int, int>(__f=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:149:25 frame swiftlang#2: 0x000000010000399c a.out`int std::__1::__invoke_void_return_wrapper<int, false>::__call[abi:se200000]<int (*&)(int, int), int, int>(__args=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:216:12 frame swiftlang#3: 0x0000000100003968 a.out`std::__1::__function::__alloc_func<int (*)(int, int), std::__1::allocator<int (*)(int, int)>, int (int, int)>::operator()[abi:se200000](this=0x000000016fdff280, __arg=0x000000016fdff224, __arg=0x000000016fdff220) at function.h:171:12 frame swiftlang#4: 0x00000001000026bc a.out`std::__1::__function::__func<int (*)(int, int), std::__1::allocator<int (*)(int, int)>, int (int, int)>::operator()(this=0x000000016fdff278, __arg=0x000000016fdff224, __arg=0x000000016fdff220) at function.h:313:10 frame swiftlang#5: 0x0000000100003c38 a.out`std::__1::__function::__value_func<int (int, int)>::operator()[abi:se200000](this=0x000000016fdff278, __args=0x000000016fdff224, __args=0x000000016fdff220) const at function.h:430:12 frame swiftlang#6: 0x0000000100002038 a.out`std::__1::function<int (int, int)>::operator()(this= Function = foo(int, int) , __arg=1, __arg=1) const at function.h:989:10 frame swiftlang#7: 0x0000000100001f64 a.out`main(argc=1, argv=0x000000016fdff4f8) at main.cpp:9:10 frame swiftlang#8: 0x0000000183cdf154 dyld`start + 2476 (lldb) ``` after ``` (lldb) bt * thread swiftlang#1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1 * frame #0: 0x0000000100001f04 a.out`foo(x=1, y=1) at main.cpp:4:10 frame swiftlang#1: 0x0000000100003a00 a.out`decltype(std::declval<int (*&)(int, int)>()(std::declval<int>(), std::declval<int>())) std::__1::__invoke[abi:se200000]<int (*&)(int, int), int, int>(__f=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:149:25 frame swiftlang#2: 0x000000010000399c a.out`int std::__1::__invoke_void_return_wrapper<int, false>::__call[abi:se200000]<int (*&)(int, int), int, int>(__args=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:216:12 frame swiftlang#6: 0x0000000100002038 a.out`std::__1::function<int (int, int)>::operator()(this= Function = foo(int, int) , __arg=1, __arg=1) const at function.h:989:10 frame swiftlang#7: 0x0000000100001f64 a.out`main(argc=1, argv=0x000000016fdff4f8) at main.cpp:9:10 frame swiftlang#8: 0x0000000183cdf154 dyld`start + 2476 Note: Some frames were hidden by frame recognizers ``` (cherry picked from commit f01f80c)
Currently, CommandObjects are obtaining a target in a variety of ways. Often the command incorrectly operates on the selected target. As an example, when a breakpoint command is running, the current target is passed into the command but the target that hit the breakpoint is not the selected target. In other places we use the CommandObject's execution context, which is frozen during the execution of the command, and comes with its own limitations. Finally, we often want to fall back to the dummy target if no real target is available. Instead of having to guess how to get the target, this patch introduces one helper function in CommandObject to get the most relevant target. In order of priority, that's the target from the command object's execution context, from the interpreter's execution context, the selected target or the dummy target. rdar://110846511 (cherry picked from commit 8398ad9)
(cherry picked from commit a0fac6f)
(cherry picked from commit 11d2de4)
Unfortunately I can't actually reproduce this locally. (cherry picked from commit 19d3f34)
The issue was introduced in llvm#104523. The code introduces the `ret_val` variable but does not use it. Instead it returns a pointer, which gets implicitly converted to bool. (cherry picked from commit 6528157)
Instead of doing the coarse-grained initial matching of frame recognizers on fully demangled names, it can be much more efficient and reliable to filter on all functions of a particular language by discriminating on the mangled symbol name. This way a recognizer can be registered that should run on all functions of a particular language by matching on its mangling prefix(es). (cherry picked from commit 099a969f10f0e60e420954db6627b55747da302d)
46085e3
to
7d14617
Compare
for partial apply forwarders and backdeplyment fallbacks. rdar://126629381
7d14617
to
e07af78
Compare
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
for partial apply forwarders and backdeplyment fallbacks.
rdar://126629381