Skip to content

[TF] Fix gradients in sum(squeezinAxes:) and mean(squeezinAxes:) #24164

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Apr 19, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 8 additions & 11 deletions stdlib/public/TensorFlow/Gradients.swift
Original file line number Diff line number Diff line change
Expand Up @@ -579,7 +579,11 @@ extension Tensor where Scalar : TensorFlowFloatingPoint {
squeezingAxes axes: Tensor<Int32>
) -> (Tensor, (Tensor) -> Tensor) {
let value = sum(squeezingAxes: axes)
return (value, { [shape = shapeTensor] in $0.broadcast(toShape: shape) })
return (value, { [shape = shapeTensor] in
var res = $0
for i in axes.array.scalars { res = res.expandingShape(at: Int(i)) }
return res.broadcast(toShape: shape)
})
}

@inlinable
Expand All @@ -591,23 +595,16 @@ extension Tensor where Scalar : TensorFlowFloatingPoint {
})
}

@inlinable
func _vjpMean(squeezingAxes axes: [Int]) -> (Tensor, (Tensor) -> Tensor) {
let value = mean(squeezingAxes: axes)
return (value, { [shape = shapeTensor,
count = axes.map { shape[$0] }.reduce(1, *)] in
$0.broadcast(toShape: shape) / Tensor(Scalar(count))
})
}

@inlinable
func _vjpMean(
squeezingAxes axes: Tensor<Int32>
) -> (Tensor, (Tensor) -> Tensor) {
let value = mean(squeezingAxes: axes)
let count = Raw.gather(params: shapeTensor, indices: axes).product()
return (value, { [shape = shapeTensor] in
$0.broadcast(toShape: shape) / Tensor(count)
var res = $0
for i in axes.array.scalars { res = res.expandingShape(at: Int(i)) }
return res.broadcast(toShape: shape) / Tensor(count)
})
}
}
Expand Down
13 changes: 7 additions & 6 deletions test/TensorFlowRuntime/tensor_autodiff_runtime.swift
Original file line number Diff line number Diff line change
Expand Up @@ -98,38 +98,39 @@ TensorADTests.testAllBackends("Abs") {
TensorADTests.testAllBackends("sum") {
let input = Tensor<Float>(repeating: 42, shape: [2, 2])
let sumPullbackScalar = pullback(at: input) { (a: Tensor<Float>) in a.sum() }
let sumPullbackSqueezingAxes = pullback(at: input) { (a: Tensor<Float>) in a.sum(squeezingAxes: 0, 1) }
let sumPullbackAlongAxes = pullback(at: input) { (a: Tensor<Float>) in a.sum(alongAxes: 0, 1) }

let expected = Tensor<Float>(ones: [2, 2])
expectEqual(expected, sumPullbackScalar(Tensor(1)))
// expectEqual(expected, sumPullbackSqueezingAxes(Tensor(1)))
expectEqual(expected, sumPullbackSqueezingAxes(Tensor(1)))
expectEqual(expected, sumPullbackAlongAxes(Tensor(1)))
expectEqual(expected * 3, sumPullbackScalar(Tensor(3)))
// expectEqual(expected * 3, sumPullbackSqueezingAxes(Tensor(3)))
expectEqual(expected * 3, sumPullbackSqueezingAxes(Tensor(3)))
expectEqual(expected * 3, sumPullbackAlongAxes(Tensor(3)))
}

TensorADTests.testAllBackends("mean") {
let meanGradScalar = gradient { (a: Tensor<Float>) in a.mean() }
// let meanGradSqueezingAxes = gradient { (a: Tensor<Float>) in a.mean(squeezingAxes: 0, 1) }
let meanGradSqueezingAxes = gradient { (a: Tensor<Float>) in a.mean(squeezingAxes: 0, 1) }
let meanGradAlongAxes = gradient { (a: Tensor<Float>) in a.mean(alongAxes: 0, 1) }

let input = Tensor<Float>(ones: [2, 2])
let expected = Tensor<Float>(repeating: 0.25, shape: [2, 2])
expectEqual(expected, meanGradScalar(input))
// expectEqual(expected, meanGradSqueezingAxes(input))
expectEqual(expected, meanGradSqueezingAxes(input))
expectEqual(expected, meanGradAlongAxes(input))
}

TensorADTests.testAllBackends("variance") {
let varianceGradScalar = gradient { (a: Tensor<Float>) in a.variance() }
// let varianceGradSqueezingAxes = gradient { (a: Tensor<Float>) in a.variance(squeezingAxes: 0, 1) }
let varianceGradSqueezingAxes = gradient { (a: Tensor<Float>) in a.variance(squeezingAxes: 0, 1) }
let varianceGradAlongAxes = gradient { (a: Tensor<Float>) in a.variance(alongAxes: 0, 1) }

let input: Tensor<Float> = [[1, 2], [3, 4]]
let expected: Tensor<Float> = [[-0.75, -0.25], [0.25, 0.75]]
expectEqual(expected, varianceGradScalar(input))
// expectEqual(expected, varianceGradSqueezingAxes(input))
expectEqual(expected, varianceGradSqueezingAxes(input))
expectEqual(expected, varianceGradAlongAxes(input))
}

Expand Down