Skip to content

The loss CatagoricalCrossEntropy is currently unusable in framework #526

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
nfeybesse opened this issue Mar 4, 2024 · 0 comments
Closed

Comments

@nfeybesse
Copy link
Contributor

The use of class org.tensorflow.framework.losses.CatagoricalCrossEntropy.java ended systematically with this issue :

Exception in thread "main" org.tensorflow.exceptions.TFInvalidArgumentException: Shape must be rank 1 but is rank 0 for '{{node SoftmaxCrossEntropyWithLogits/Slice}} = Slice[Index=DT_INT64, T=DT_INT64](SoftmaxCrossEntropyWithLogits/Shape, SoftmaxCrossEntropyWithLogits/Sub, SoftmaxCrossEntropyWithLogits/Const)' with input shapes: [2], [], [].
at org.tensorflow.internal.c_api.AbstractTF_Status.throwExceptionIfNotOK(AbstractTF_Status.java:87)
at org.tensorflow.GraphOperationBuilder.finish(GraphOperationBuilder.java:461)
at org.tensorflow.GraphOperationBuilder.build(GraphOperationBuilder.java:100)
at org.tensorflow.GraphOperationBuilder.build(GraphOperationBuilder.java:71)
at org.tensorflow.op.core.Slice.create(Slice.java:90)
at org.tensorflow.framework.op.nn.SoftmaxCrossEntropyWithLogits.flattenOuterDims(SoftmaxCrossEntropyWithLogits.java:184)
at org.tensorflow.framework.op.nn.SoftmaxCrossEntropyWithLogits.softmaxCrossEntropyWithLogits(SoftmaxCrossEntropyWithLogits.java:116)
at org.tensorflow.framework.op.NnOps.softmaxCrossEntropyWithLogits(NnOps.java:145)
at org.tensorflow.framework.losses.Losses.categoricalCrossentropy(Losses.java:253)
at org.tensorflow.framework.losses.CategoricalCrossentropy.call(CategoricalCrossentropy.java:256)
at org.tensorflow.framework.losses.impl.AbstractLoss.call(AbstractLoss.java:69)
at org.genericsystem.keras.losses.SparseCategoricalCrossentropyLoss.internal(SparseCategoricalCrossentropyLoss.java:61)
at org.genericsystem.keras.losses.NativeLossLayer.internalCall(NativeLossLayer.java:23)
at org.genericsystem.keras.layers.Layer.call(Layer.java:31)
at org.genericsystem.keras.layers.Layer.call(Layer.java:23)
at org.genericsystem.keras.model.ModelContext.initalize(ModelContext.java:59)
at org.genericsystem.keras.model.TrainingContext.initalize(TrainingContext.java:28)
at org.genericsystem.keras.model.Model.trainStep(Model.java:260)
at org.genericsystem.keras.example.gan.AbstractACGanApp$3.trainStep(AbstractACGanApp.java:67)
at org.genericsystem.keras.model.Model.train(Model.java:453)
at org.genericsystem.keras.model.Model.fit(Model.java:433)
at org.genericsystem.keras.example.gan.AbstractGanApp.lambda$3(AbstractGanApp.java:117)
at org.genericsystem.keras.GSKeras.safeExecuteSession(GSKeras.java:164)
at org.genericsystem.keras.example.gan.AbstractGanApp.fit(AbstractGanApp.java:109)
at org.genericsystem.keras.example.gan.acgan.cifar10.ACGanApp.main(ACGanApp.java:26)

This is due to the method flattenOuterDims in org.tensorflow.framework.op.nn.SoftmaxCrossEntropyWithLogits.java which build attribute rankminusone as a scalar instead of an array (rank1)
nfeybesse added a commit to nfeybesse/tensorflow that referenced this issue Mar 4, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant