Skip to content
This repository was archived by the owner on Jul 1, 2023. It is now read-only.

Batchnorm changes: fix axis handling and drop workaround for AD crasher #1

Merged
merged 1 commit into from
Feb 12, 2019
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
57 changes: 25 additions & 32 deletions Sources/DeepLearning/Layer.swift
Original file line number Diff line number Diff line change
Expand Up @@ -155,8 +155,9 @@ public struct BatchNorm<Scalar>: Layer

@differentiable(wrt: (self, input))
private func applyTraining(to input: Tensor<Scalar>) -> Tensor<Scalar> {
let mean = input.mean(alongAxes: axis)
let variance = input.variance(alongAxes: axis)
let positiveAxis = (input.rank + axis) % input.rank
let mean = input.mean(alongAxes: [0, positiveAxis])
let variance = input.variance(alongAxes: [0, positiveAxis])
runningMean.value += (mean - runningMean.value) * (1 - momentum)
runningVariance.value += (
variance - runningVariance.value) * (1 - momentum)
Expand All @@ -170,41 +171,33 @@ public struct BatchNorm<Scalar>: Layer
return (input - runningMean.value) * inv + offset
}

// TODO fix crasher in the below to enable behavior that differs between
// training and inference
//
// @differentiable(wrt: (self, input), vjp: _vjpApplied(to:))
// public func applied(to input: Tensor<Scalar>) -> Tensor<Scalar> {
// if learningPhaseIndicator.training {
// return applyTraining(to: input)
// } else {
// return applyInference(to: input)
// }
// }
//
// public func _vjpApplied(to input: Tensor<Scalar>) ->
// (Tensor<Scalar>, (Tensor<Scalar>) ->
// (BatchNorm<Scalar>.CotangentVector, Tensor<Scalar>)) {
// if learningPhaseIndicator.training {
// return self.valueWithPullback(at: input) {
// $0.applyTraining(to: $1)
// }
// } else {
// return self.valueWithPullback(at: input) {
// $0.applyInference(to: $1)
// }
// }
// }
//
// Work around for now by always using training mode
@differentiable(wrt: (self, input))
@differentiable(wrt: (self, input), vjp: _vjpApplied(to:))
public func applied(to input: Tensor<Scalar>) -> Tensor<Scalar> {
return applyTraining(to: input)
if learningPhaseIndicator.training {
return applyTraining(to: input)
} else {
return applyInference(to: input)
}
}

@usableFromInline
func _vjpApplied(to input: Tensor<Scalar>) ->
(Tensor<Scalar>, (Tensor<Scalar>) ->
(BatchNorm<Scalar>.CotangentVector, Tensor<Scalar>)) {
if learningPhaseIndicator.training {
return self.valueWithPullback(at: input) {
$0.applyTraining(to: $1)
}
} else {
return self.valueWithPullback(at: input) {
$0.applyInference(to: $1)
}
}
}

public init(featureCount: Int,
learningPhaseIndicator: LearningPhaseIndicator,
axis: Int = 0,
axis: Int = -1,
momentum: Tensor<Scalar> = Tensor(0.99),
epsilon: Tensor<Scalar> = Tensor(0.001)) {
self.axis = Int32(axis)
Expand Down