This repository was archived by the owner on Jul 1, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 137
Move Dataset.swift over from TensorFlow. #133
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,216 @@ | ||
//===-- Dataset.swift -----------------------------------------*- swift -*-===// | ||
// | ||
// This source file is part of the Swift.org open source project | ||
// | ||
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors | ||
// Licensed under Apache License v2.0 with Runtime Library Exception | ||
// | ||
// See https://swift.org/LICENSE.txt for license information | ||
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors | ||
// | ||
//===----------------------------------------------------------------------===// | ||
// | ||
// The dataset API. | ||
// | ||
//===----------------------------------------------------------------------===// | ||
|
||
/// The default graph seed. | ||
/// | ||
/// - Note: See TensorFlow's `python.framework.random_seed.DEFAULT_GRAPH_SEED`. | ||
@usableFromInline let _defaultGraphSeed: Int64 = 87654321 | ||
|
||
/// Returns the local seeds an operation should use given an op-specific seed. | ||
/// | ||
/// Given operation-specific seed, `seed`, this helper function returns two | ||
/// seeds derived from graph-level and op-level seeds. Many random operations | ||
/// internally use the two seeds to allow user to change the seed globally for a | ||
/// graph, or for only specific operations. | ||
/// | ||
/// - Note: See TensorFlow's `python.framework.random_seed.get_seed`. | ||
/// | ||
// TODO: There's no support for TF's "global seed" yet, so we always use the | ||
// default graph seed as the first seed. Need to investigate the best way to | ||
// model TF's "global seed". | ||
@usableFromInline @inline(__always) | ||
func _tensorSeeds(_ seed: Tensor<Int64>) -> (Tensor<Int64>, Tensor<Int64>) { | ||
return (Tensor(_defaultGraphSeed), seed) | ||
} | ||
|
||
//===----------------------------------------------------------------------===// | ||
// Single value dataset | ||
//===----------------------------------------------------------------------===// | ||
|
||
/// Represents a potentially large set of elements. | ||
/// | ||
/// A `Dataset` can be used to represent an input pipeline as a collection of | ||
/// element tensors. | ||
@_fixed_layout | ||
public struct Dataset<Element : TensorGroup> { | ||
public let _handle: VariantHandle | ||
|
||
@inlinable | ||
public init(_handle: VariantHandle) { | ||
self._handle = _handle | ||
} | ||
} | ||
|
||
public extension Dataset { | ||
@inlinable | ||
init(randomSeed: Int64) { | ||
let (seed1, seed2) = _tensorSeeds(Tensor(randomSeed)) | ||
self.init(_handle: Raw.experimentalRandomDataset( | ||
seed: seed1, | ||
seed2: seed2, | ||
outputTypes: Element._typeList, | ||
outputShapes: Element._unknownShapeList)) | ||
} | ||
} | ||
|
||
public extension Dataset { | ||
/// Creates a dataset from a batch of elements as a tensor. | ||
@inlinable | ||
init(elements: Element) { | ||
self.init(_handle: Raw.tensorSliceDataset( | ||
components: [elements], | ||
outputShapes: Element._unknownShapeList)) | ||
} | ||
} | ||
|
||
extension Dataset : Sequence { | ||
public typealias Iterator = DatasetIterator<Element> | ||
|
||
/// Returns an iterator over the elements of this dataset. | ||
@inlinable | ||
public func makeIterator() -> DatasetIterator<Element> { | ||
let resource = Raw.anonymousIterator( | ||
outputTypes: Element._typeList, | ||
outputShapes: Element._unknownShapeList) | ||
Raw.makeIterator(dataset: _handle, iterator: resource) | ||
return DatasetIterator(_handle: resource) | ||
} | ||
} | ||
|
||
public extension Dataset { | ||
// Note that this Dataset API implementation uses an experimental tracing | ||
// feature, which is not robust and does not have great diagnostics yet. | ||
@inlinable | ||
func map<ResultElement : TensorGroup>( | ||
_ transform: (Element) -> ResultElement | ||
) -> Dataset<ResultElement> { | ||
return Dataset<ResultElement>(_handle: Raw.mapDataset( | ||
inputDataset: _handle, | ||
otherArguments: Tensor<Int32>(0), | ||
f: transform, | ||
outputTypes: ResultElement._typeList, | ||
outputShapes: ResultElement._unknownShapeList, | ||
useInterOpParallelism: true, | ||
preserveCardinality: false)) | ||
} | ||
|
||
@inlinable | ||
func map<ResultElement : TensorGroup>( | ||
parallelCallCount: Int, | ||
_ transform: (Element) -> ResultElement | ||
) -> Dataset<ResultElement> { | ||
return Dataset<ResultElement>(_handle: Raw.parallelMapDataset( | ||
inputDataset: _handle, | ||
otherArguments: Tensor<Int32>(0), | ||
numParallelCalls: Tensor<Int32>(Int32(parallelCallCount)), | ||
f: transform, | ||
outputTypes: ResultElement._typeList, | ||
outputShapes: ResultElement._unknownShapeList, | ||
useInterOpParallelism: true, | ||
sloppy: false, | ||
preserveCardinality: false)) | ||
} | ||
|
||
@inlinable | ||
func filter( | ||
_ isIncluded: (Element) -> Tensor<Bool> | ||
) -> Dataset { | ||
return Dataset(_handle: Raw.filterDataset( | ||
inputDataset: _handle, | ||
otherArguments: Tensor<Int32>(0), | ||
predicate: isIncluded, | ||
outputTypes: Element._typeList, | ||
outputShapes: Element._unknownShapeList)) | ||
} | ||
} | ||
|
||
public extension Dataset { | ||
@inlinable | ||
func shuffled( | ||
sampleCount: Int, randomSeed: Int64 | ||
) -> Dataset { | ||
let (seed1, seed2) = _tensorSeeds(Tensor(randomSeed)) | ||
return Dataset(_handle: Raw.shuffleDataset( | ||
inputDataset: _handle, | ||
bufferSize: Tensor(Int64(sampleCount)), | ||
seed: seed1, | ||
seed2: seed2, | ||
outputTypes: Element._typeList, | ||
outputShapes: Element._unknownShapeList)) | ||
} | ||
|
||
@inlinable | ||
func batched(_ batchSize: Int) -> Dataset { | ||
return Dataset(_handle: Raw.batchDataset( | ||
inputDataset: _handle, | ||
batchSize: Tensor(Int64(batchSize)), | ||
outputTypes: Element._typeList, | ||
outputShapes: Element._unknownShapeList)) | ||
} | ||
} | ||
|
||
/// The type that allows iteration over a dataset's elements. | ||
@_fixed_layout | ||
public struct DatasetIterator<Element : TensorGroup> { | ||
@usableFromInline let _handle: ResourceHandle | ||
|
||
@usableFromInline | ||
internal init(_handle: ResourceHandle) { | ||
self._handle = _handle | ||
} | ||
} | ||
|
||
extension DatasetIterator : IteratorProtocol { | ||
/// Advances to the next element and returns it, or `nil` if no next element | ||
/// exists. | ||
@inlinable | ||
public mutating func next() -> Element? { | ||
let optional = Raw.iteratorGetNextAsOptional( | ||
iterator: _handle, | ||
outputTypes: Element._typeList, | ||
outputShapes: Element._unknownShapeList) | ||
guard Raw.optionalHasValue(optional: optional).scalarized() else { | ||
return nil | ||
} | ||
return Raw.optionalGetValue( | ||
optional: optional, | ||
outputShapes: Element._unknownShapeList) | ||
} | ||
} | ||
|
||
/// A 2-tuple-like struct that conforms to TensorGroup that represents a tuple | ||
/// of 2 types conforming to TensorGroup. | ||
@_fixed_layout | ||
public struct Zip2TensorGroup<T : TensorGroup, U : TensorGroup> : TensorGroup { | ||
public var first: T | ||
public var second: U | ||
|
||
public init(_ first: T, _ second: U) { | ||
self.first = first | ||
self.second = second | ||
} | ||
} | ||
|
||
@inlinable | ||
public func zip<T : TensorGroup, U : TensorGroup>( | ||
_ dataset1: Dataset<T>, _ dataset2: Dataset<U> | ||
) -> Dataset<Zip2TensorGroup<T, U>> { | ||
let handle = Raw.zipDataset( | ||
inputDatasets: [dataset1._handle, dataset2._handle], | ||
outputTypes: Zip2TensorGroup<T, U>._typeList, | ||
outputShapes: Zip2TensorGroup<T, U>._unknownShapeList) | ||
return Dataset(_handle: handle) | ||
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
// Copyright 2019 The TensorFlow Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
import XCTest | ||
import DeepLearning | ||
|
||
struct SimpleOutput : TensorGroup { | ||
let a: TensorHandle<Int32> | ||
let b: TensorHandle<Int32> | ||
} | ||
|
||
final class DatasetTests: XCTestCase { | ||
func testMultiValue() { | ||
let elements1: Tensor<Int32> = [0, 1, 2] | ||
let elements2: Tensor<Int32> = [10, 11, 12] | ||
let outputTypes = [Int32.tensorFlowDataType, Int32.tensorFlowDataType] | ||
let outputShapes: [TensorShape?] = [nil, nil] | ||
let dataset: VariantHandle = Raw.tensorSliceDataset( | ||
components: [elements1, elements2], | ||
outputShapes: outputShapes | ||
) | ||
let iterator: ResourceHandle = Raw.iteratorV2(sharedName: "blah", | ||
container: "earth", outputTypes: outputTypes, outputShapes: outputShapes | ||
) | ||
Raw.makeIterator(dataset: dataset, iterator: iterator) | ||
var next: SimpleOutput = Raw.iteratorGetNext( | ||
iterator: iterator, outputShapes: outputShapes | ||
) | ||
XCTAssertEqual(0, Tensor(handle: next.a).scalarized()) | ||
XCTAssertEqual(10, Tensor(handle: next.b).scalarized()) | ||
next = Raw.iteratorGetNext( | ||
iterator: iterator, outputShapes: outputShapes | ||
) | ||
XCTAssertEqual(1, Tensor(handle: next.a).scalarized()) | ||
XCTAssertEqual(11, Tensor(handle: next.b).scalarized()) | ||
next = Raw.iteratorGetNext( | ||
iterator: iterator, outputShapes: outputShapes | ||
) | ||
XCTAssertEqual(2, Tensor(handle: next.a).scalarized()) | ||
XCTAssertEqual(12, Tensor(handle: next.b).scalarized()) | ||
} | ||
|
||
func testSingleValueManualIterator() { | ||
// [[1], [2], [3], [4], [5]] | ||
let scalars = Tensor<Float>(rangeFrom: 0, to: 5, stride: 1) | ||
.reshaped(to: [5, 1]) | ||
let dataset = Dataset(elements: scalars) | ||
var iterator = dataset.makeIterator() | ||
var i: Int = 0 | ||
while let item = iterator.next() { | ||
XCTAssertEqual(scalars[i].array, item.array) | ||
i += 1 | ||
} | ||
} | ||
|
||
func testDatasetIteration() { | ||
// [[1], [2], [3], [4], [5]] | ||
let scalars = Tensor<Float>(rangeFrom: 0, to: 5, stride: 1) | ||
.reshaped(to: [5, 1]) | ||
let dataset = Dataset(elements: scalars) | ||
var i: Int = 0 | ||
for item in dataset { | ||
XCTAssertEqual(scalars[i].array, item.array) | ||
i += 1 | ||
} | ||
} | ||
|
||
func testSingleValueTransformations() { | ||
let scalars = Tensor<Float>(rangeFrom: 0, to: 5, stride: 1) | ||
let dataset = Dataset(elements: scalars) | ||
let shuffled = dataset.shuffled(sampleCount: 5, randomSeed: 42) | ||
XCTAssertEqual([0, 4, 1, 3, 2], shuffled.map { $0.scalar! }) | ||
} | ||
|
||
func testSingleValueHOFs() { | ||
let scalars = Tensor<Float>(rangeFrom: 0, to: 5, stride: 1) | ||
let dataset = Dataset(elements: scalars) | ||
let addedOne: Dataset = dataset.map { $0 + 1 } | ||
XCTAssertEqual([1, 2, 3, 4, 5], addedOne.flatMap { $0.scalars }) | ||
// Use '.==' in the following closure to avoid any conversions to | ||
// host data types, which is not handled correctly in tracing. | ||
let evens: Dataset = dataset.filter { Tensor($0 % 2) .== Tensor(0) } | ||
XCTAssertEqual([0, 2, 4], evens.flatMap { $0.scalars }) | ||
} | ||
|
||
func testParallelMap() { | ||
let scalars = Tensor<Float>(rangeFrom: 0, to: 5, stride: 1) | ||
let dataset = Dataset(elements: scalars) | ||
let addedOne: Dataset = dataset.map(parallelCallCount: 5) { $0 + 1 } | ||
XCTAssertEqual([1, 2, 3, 4, 5], addedOne.flatMap { $0.scalars }) | ||
// Use '.==' in the following closure to avoid any conversions to | ||
// host data types, which is not handled correctly in tracing. | ||
let evens: Dataset = dataset.filter { Tensor($0 % 2) .== Tensor(0) } | ||
XCTAssertEqual([0, 2, 4], evens.flatMap { $0.scalars }) | ||
} | ||
|
||
func testMapToDifferentType() { | ||
let scalars = Tensor<Float>(rangeFrom: 0, to: 5, stride: 1) | ||
let dataset = Dataset(elements: scalars) | ||
let shuffled = dataset.shuffled(sampleCount: 5, randomSeed: 42) | ||
XCTAssertEqual([0, 4, 1, 3, 2], shuffled.map { $0.scalar! }) | ||
let evens = shuffled.map { Tensor($0 % 2) .== Tensor(0) } | ||
XCTAssertEqual([true, true, false, false, true], evens.map { $0.scalar! }) | ||
} | ||
|
||
func testSingleValueBatched() { | ||
let scalars = Tensor<Float>(rangeFrom: 0, to: 5, stride: 1) | ||
let dataset = Dataset(elements: scalars) | ||
let batched = dataset.batched(2) | ||
|
||
var iterator = batched.makeIterator() | ||
XCTAssertEqual([0, 1], iterator.next()!.scalars) | ||
XCTAssertEqual([2, 3], iterator.next()!.scalars) | ||
XCTAssertEqual([4], iterator.next()!.scalars) | ||
} | ||
|
||
/* | ||
func testDoubleValueDatasetIteration() { | ||
let scalars1 = Tensor<Float>(rangeFrom: 0, to: 5, stride: 1) | ||
let scalars2 = Tensor<Int32>(rangeFrom: 5, to: 10, stride: 1) | ||
let datasetLeft = Dataset(elements: scalars1) | ||
let datasetRight = Dataset(elements: scalars2) | ||
var i: Int = 0 | ||
for pair in zip(datasetLeft, datasetRight) { | ||
XCTAssertEqual(scalars1[i].array, pair.first.array) | ||
XCTAssertEqual(scalars2[i].array, pair.second.array) | ||
i += 1 | ||
} | ||
} | ||
*/ | ||
|
||
static var allTests = [ | ||
("testMultiValue", testMultiValue), | ||
("testSingleValueManualIterator", testSingleValueManualIterator), | ||
("testDatasetIteration", testDatasetIteration), | ||
("testSingleValueTransformations", testSingleValueTransformations), | ||
("testSingleValueHOFs", testSingleValueHOFs), | ||
("testParallelMap", testParallelMap), | ||
("testMapToDifferentType", testMapToDifferentType), | ||
("testSingleValueBatched", testSingleValueBatched), | ||
// Currently broken even in TensorFlow ... | ||
// This will be easier to fix once everything is moved ... | ||
// ("testDoubleValueDatasetIteration", testDoubleValueDatasetIteration), | ||
] | ||
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.