Skip to content

Update end_to_end_test.py #409

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
80 changes: 8 additions & 72 deletions tools/gpt/end_to_end_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
from transformers import AutoTokenizer
from utils import utils

if __name__ == '__main__':
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('-v',
'--verbose',
Expand All @@ -29,8 +29,8 @@
type=str,
required=False,
default='http',
help='Protocol ("http"/"grpc") used to ' +
'communicate with inference service. Default is "http".')
choices=['http', 'grpc'],
help='Protocol ("http"/"grpc") used to communicate with inference service. Default is "http".')
parser.add_argument('-c',
'--concurrency',
type=int,
Expand Down Expand Up @@ -65,14 +65,11 @@
type=str,
required=True,
help='Specify tokenizer directory')
return parser.parse_args()

FLAGS = parser.parse_args()
if (FLAGS.protocol != "http") and (FLAGS.protocol != "grpc"):
print(
"unexpected protocol \"{}\", expects \"http\" or \"grpc\"".format(
FLAGS.protocol))
exit(1)

def main():
FLAGS = parse_args()

if FLAGS.url is None:
FLAGS.url = "localhost:8000" if FLAGS.protocol == "http" else "localhost:8001"

Expand Down Expand Up @@ -188,65 +185,4 @@
runtime_top_p = FLAGS.topp * np.ones([input0_data.shape[0], 1]).astype(
np.float32)
temperature = 1.0 * np.ones([input0_data.shape[0], 1]).astype(
np.float32)
len_penalty = 1.0 * np.ones([input0_data.shape[0], 1]).astype(
np.float32)
repetition_penalty = 1.0 * np.ones([input0_data.shape[0], 1]).astype(
np.float32)
random_seed = 0 * np.ones([input0_data.shape[0], 1]).astype(np.uint64)
output_log_probs = True * np.ones([input0_data.shape[0], 1
]).astype(bool)
beam_width = (FLAGS.beam_width *
np.ones([input0_data.shape[0], 1])).astype(np.int32)
pad_ids = pad_id * \
np.ones([input0_data.shape[0], 1]).astype(np.int32)
end_ids = end_id * \
np.ones([input0_data.shape[0], 1]).astype(np.int32)
min_length = 1 * \
np.ones([input0_data.shape[0], 1]).astype(np.int32)
presence_penalty = 0.0 * \
np.ones([input0_data.shape[0], 1]).astype(np.float32)
frequency_penalty = 0.0 * \
np.ones([input0_data.shape[0], 1]).astype(np.float32)
inputs = [
utils.prepare_tensor("text_input", input0_data, FLAGS.protocol),
utils.prepare_tensor("max_tokens", output0_len, FLAGS.protocol),
utils.prepare_tensor("bad_words", bad_words_list, FLAGS.protocol),
utils.prepare_tensor("stop_words", stop_words_list,
FLAGS.protocol),
utils.prepare_tensor("pad_id", pad_ids, FLAGS.protocol),
utils.prepare_tensor("end_id", end_ids, FLAGS.protocol),
utils.prepare_tensor("beam_width", beam_width, FLAGS.protocol),
utils.prepare_tensor("top_k", runtime_top_k, FLAGS.protocol),
utils.prepare_tensor("top_p", runtime_top_p, FLAGS.protocol),
utils.prepare_tensor("temperature", temperature, FLAGS.protocol),
utils.prepare_tensor("length_penalty", len_penalty,
FLAGS.protocol),
utils.prepare_tensor("repetition_penalty", repetition_penalty,
FLAGS.protocol),
utils.prepare_tensor("min_length", min_length, FLAGS.protocol),
utils.prepare_tensor("presence_penalty", presence_penalty,
FLAGS.protocol),
utils.prepare_tensor("frequency_penalty", frequency_penalty,
FLAGS.protocol),
utils.prepare_tensor("random_seed", random_seed, FLAGS.protocol),
utils.prepare_tensor("output_log_probs", output_log_probs,
FLAGS.protocol),
]

try:
result = client.infer(model_name, inputs)
ensemble_output0 = result.as_numpy("text_output")
print("============After ensemble============")
batch_size = len(input0)
ensemble_output0 = ensemble_output0.reshape([-1, batch_size
]).T.tolist()
ensemble_output0 = [[char.decode('UTF-8') for char in line]
for line in ensemble_output0]
ensemble_output0 = [''.join(line) for line in ensemble_output0]
for line in ensemble_output0:
print(f"{line}")
except Exception as e:
print(e)

assert output0 == ensemble_output0