Skip to content

Nuvoton: Rework us_ticker, lp_ticker and RTC #6028

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
243 changes: 139 additions & 104 deletions targets/TARGET_NUVOTON/TARGET_M451/lp_ticker.c
Original file line number Diff line number Diff line change
Expand Up @@ -13,37 +13,38 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include "lp_ticker_api.h"

#if DEVICE_LOWPOWERTIMER

#include "sleep_api.h"
#include "mbed_wait_api.h"
#include "mbed_assert.h"
#include "nu_modutil.h"
#include "nu_miscutil.h"
#include "mbed_critical.h"

// lp_ticker tick = us = timestamp
#define US_PER_TICK (1)
#define US_PER_SEC (1000 * 1000)

#define US_PER_TMR2_INT (US_PER_SEC * 10)
#define TMR2_CLK_PER_SEC (__LXT)
#define TMR2_CLK_PER_TMR2_INT ((uint32_t) ((uint64_t) US_PER_TMR2_INT * TMR2_CLK_PER_SEC / US_PER_SEC))
#define TMR3_CLK_PER_SEC (__LXT)
/* Micro seconds per second */
#define NU_US_PER_SEC 1000000
/* Timer clock per lp_ticker tick */
#define NU_TMRCLK_PER_TICK 1
/* Timer clock per second */
#define NU_TMRCLK_PER_SEC (__LXT)
/* Timer max counter bit size */
#define NU_TMR_MAXCNT_BITSIZE 24
/* Timer max counter */
#define NU_TMR_MAXCNT ((1 << NU_TMR_MAXCNT_BITSIZE) - 1)

static void tmr2_vec(void);
static void tmr3_vec(void);
static void lp_ticker_arm_cd(void);
/* Configure scheduled alarm */
static void arm_alarm(uint32_t cd_clk);

static int lp_ticker_inited = 0;
static volatile uint32_t counter_major = 0;
static volatile uint32_t cd_major_minor_clks = 0;
static volatile uint32_t cd_minor_clks = 0;
static volatile uint32_t wakeup_tick = (uint32_t) -1;
static int ticker_inited = 0;
static uint32_t ticker_last_read_clk = 0;

// NOTE: To wake the system from power down mode, timer clock source must be ether LXT or LIRC.
// NOTE: TIMER_2 for normal counting and TIMER_3 for scheduled wakeup
/* NOTE: To wake the system from power down mode, timer clock source must be ether LXT or LIRC. */
/* NOTE: TIMER_2 for normal counting and TIMER_3 for scheduled alarm */
static const struct nu_modinit_s timer2_modinit = {TIMER_2, TMR2_MODULE, CLK_CLKSEL1_TMR2SEL_LXT, 0, TMR2_RST, TMR2_IRQn, (void *) tmr2_vec};
static const struct nu_modinit_s timer3_modinit = {TIMER_3, TMR3_MODULE, CLK_CLKSEL1_TMR3SEL_LXT, 0, TMR3_RST, TMR3_IRQn, (void *) tmr3_vec};

Expand All @@ -52,20 +53,17 @@ static const struct nu_modinit_s timer3_modinit = {TIMER_3, TMR3_MODULE, CLK_CLK

void lp_ticker_init(void)
{
if (lp_ticker_inited) {
if (ticker_inited) {
return;
}
lp_ticker_inited = 1;

counter_major = 0;
cd_major_minor_clks = 0;
cd_minor_clks = 0;
wakeup_tick = (uint32_t) -1;
ticker_inited = 1;

ticker_last_read_clk = 0;

// Reset module
SYS_ResetModule(timer2_modinit.rsetidx);
SYS_ResetModule(timer3_modinit.rsetidx);

// Select IP clock source
CLK_SetModuleClock(timer2_modinit.clkidx, timer2_modinit.clksrc, timer2_modinit.clkdiv);
CLK_SetModuleClock(timer3_modinit.clkidx, timer3_modinit.clksrc, timer3_modinit.clkdiv);
Expand All @@ -75,93 +73,114 @@ void lp_ticker_init(void)

// Configure clock
uint32_t clk_timer2 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
uint32_t prescale_timer2 = clk_timer2 / TMR2_CLK_PER_SEC - 1;
uint32_t prescale_timer2 = clk_timer2 / NU_TMRCLK_PER_SEC - 1;
MBED_ASSERT((prescale_timer2 != (uint32_t) -1) && prescale_timer2 <= 127);
MBED_ASSERT((clk_timer2 % TMR2_CLK_PER_SEC) == 0);
uint32_t cmp_timer2 = TMR2_CLK_PER_TMR2_INT;
MBED_ASSERT((clk_timer2 % NU_TMRCLK_PER_SEC) == 0);
uint32_t cmp_timer2 = TMR_CMP_MAX;
MBED_ASSERT(cmp_timer2 >= TMR_CMP_MIN && cmp_timer2 <= TMR_CMP_MAX);
// Continuous mode
// NOTE: TIMER_CTL_CNTDATEN_Msk exists in NUC472, but not in M451. In M451, TIMER_CNT is updated continuously by default.
((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->CTL = TIMER_PERIODIC_MODE | prescale_timer2/* | TIMER_CTL_CNTDATEN_Msk*/;
((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->CMP = cmp_timer2;

// Set vector
NVIC_SetVector(timer2_modinit.irq_n, (uint32_t) timer2_modinit.var);
NVIC_SetVector(timer3_modinit.irq_n, (uint32_t) timer3_modinit.var);

NVIC_EnableIRQ(timer2_modinit.irq_n);
NVIC_EnableIRQ(timer3_modinit.irq_n);

TIMER_EnableInt((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer2_modinit.modname));

// NOTE: TIMER_Start() first and then lp_ticker_set_interrupt(); otherwise, we may get stuck in lp_ticker_read() because
// timer is not running.

// Start timer
/* NOTE: When engine is clocked by low power clock source (LXT/LIRC), we need to wait for 3 engine clocks. */
wait_us((NU_US_PER_SEC / NU_TMRCLK_PER_SEC) * 3);
TIMER_Start((TIMER_T *) NU_MODBASE(timer2_modinit.modname));

// Schedule wakeup to match semantics of lp_ticker_get_compare_match()
lp_ticker_set_interrupt(wakeup_tick);
}

timestamp_t lp_ticker_read()
{
if (! lp_ticker_inited) {
{
if (! ticker_inited) {
lp_ticker_init();
}

TIMER_T * timer2_base = (TIMER_T *) NU_MODBASE(timer2_modinit.modname);

do {
uint64_t major_minor_clks;
uint32_t minor_clks;

// NOTE: As TIMER_CNT = TIMER_CMP and counter_major has increased by one, TIMER_CNT doesn't change to 0 for one tick time.
// NOTE: As TIMER_CNT = TIMER_CMP or TIMER_CNT = 0, counter_major (ISR) may not sync with TIMER_CNT. So skip and fetch stable one at the cost of 1 clock delay on this read.
do {
core_util_critical_section_enter();

// NOTE: Order of reading minor_us/carry here is significant.
minor_clks = TIMER_GetCounter(timer2_base);
uint32_t carry = (timer2_base->INTSTS & TIMER_INTSTS_TIF_Msk) ? 1 : 0;
// When TIMER_CNT approaches TIMER_CMP and will wrap soon, we may get carry but TIMER_CNT not wrapped. Hanlde carefully carry == 1 && TIMER_CNT is near TIMER_CMP.
if (carry && minor_clks > (TMR2_CLK_PER_TMR2_INT / 2)) {
major_minor_clks = (counter_major + 1) * TMR2_CLK_PER_TMR2_INT;
}
else {
major_minor_clks = (counter_major + carry) * TMR2_CLK_PER_TMR2_INT + minor_clks;
}

core_util_critical_section_exit();
}
while (minor_clks == 0 || minor_clks == TMR2_CLK_PER_TMR2_INT);

// Add power-down compensation
return ((uint64_t) major_minor_clks * US_PER_SEC / TMR2_CLK_PER_SEC / US_PER_TICK);
}
while (0);

ticker_last_read_clk = TIMER_GetCounter(timer2_base);
return (ticker_last_read_clk / NU_TMRCLK_PER_TICK);
}

void lp_ticker_set_interrupt(timestamp_t timestamp)
{
uint32_t delta = timestamp - lp_ticker_read();
wakeup_tick = timestamp;

TIMER_Stop((TIMER_T *) NU_MODBASE(timer3_modinit.modname));

/* We need to get alarm interval from alarm timestamp `timestamp` to configure H/W timer.
*
* Because both `timestamp` and xx_ticker_read() would wrap around, we have difficulties in distinguishing
* long future event and past event. To distinguish them, we need `tick_last_read` against which
* `timestamp` is calculated out. In timeline, we would always have below after fixing wrap-around:
* (1) tick_last_read <= present_clk
* (2) tick_last_read <= alarm_ts_clk
*
*
* 1. Future event case:
*
* tick_last_read present_clk alarm_ts_clk
* | | |
* --------------------------------------------------------
* |-alarm_intvl1_clk-|
* |-------------------alarm_intvl2_clk-------------------|
*
* 2. Past event case:
*
* tick_last_read alarm_ts_clk present_clk
* | | |
* --------------------------------------------------------
* |-------------------alarm_intvl1_clk-------------------|
* |-alarm_intvl2_clk-|
*
* Unfortunately, `tick_last_read` is not passed along the xx_ticker_set_interrupt() call. To solve it, we
* assume that `tick_last_read` tick is exactly the one returned by the last xx_ticker_read() call before
* xx_ticker_set_interrupt() is invoked. With this assumption, we can hold it via `xx_ticker_last_read_clk`
* in xx_ticker_read().
*/

/* ticker_last_read_clk will update in lp_ticker_read(). Keep it beforehand. */
uint32_t last_read_clk = ticker_last_read_clk;
uint32_t present_clk = lp_ticker_read() * NU_TMRCLK_PER_TICK;
uint32_t alarm_ts_clk = timestamp * NU_TMRCLK_PER_TICK;
uint32_t alarm_intvl1_clk, alarm_intvl2_clk;

cd_major_minor_clks = (uint64_t) delta * US_PER_TICK * TMR3_CLK_PER_SEC / US_PER_SEC;
lp_ticker_arm_cd();
}
/* alarm_intvl1_clk = present_clk - last_read_clk
*
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
*/
if (present_clk >= last_read_clk) {
alarm_intvl1_clk = present_clk - last_read_clk;
} else {
alarm_intvl1_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + present_clk - last_read_clk);
}

void lp_ticker_fire_interrupt(void)
{
cd_major_minor_clks = cd_minor_clks = 0;
/**
* This event was in the past. Set the interrupt as pending, but don't process it here.
* This prevents a recurive loop under heavy load which can lead to a stack overflow.
*/
NVIC_SetPendingIRQ(timer3_modinit.irq_n);
/* alarm_intvl2_clk = alarm_ts_clk - last_read_clk
*
* NOTE: Don't miss the `=` sign here. Otherwise, we would get the wrong result.
*/
if (alarm_ts_clk >= last_read_clk) {
alarm_intvl2_clk = alarm_ts_clk - last_read_clk;
} else {
alarm_intvl2_clk = (uint32_t) (((uint64_t) NU_TMR_MAXCNT) + 1 + alarm_ts_clk - last_read_clk);
}

/* Distinguish (long) future event and past event
*
* NOTE: No '=' sign here. Alarm should go off immediately in equal case.
*/
if (alarm_intvl2_clk > alarm_intvl1_clk) {
/* Schedule for future event */
arm_alarm(alarm_intvl2_clk - alarm_intvl1_clk);
} else {
/* Go off immediately for past event, including equal case */
lp_ticker_fire_interrupt();
}
}

void lp_ticker_disable_interrupt(void)
Expand All @@ -174,48 +193,64 @@ void lp_ticker_clear_interrupt(void)
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
}

void lp_ticker_fire_interrupt(void)
{
// NOTE: This event was in the past. Set the interrupt as pending, but don't process it here.
// This prevents a recursive loop under heavy load which can lead to a stack overflow.
NVIC_SetPendingIRQ(timer3_modinit.irq_n);
}

static void tmr2_vec(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
counter_major ++;
}

static void tmr3_vec(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
cd_major_minor_clks = (cd_major_minor_clks > cd_minor_clks) ? (cd_major_minor_clks - cd_minor_clks) : 0;
if (cd_major_minor_clks == 0) {
// NOTE: lp_ticker_set_interrupt() may get called in lp_ticker_irq_handler();
lp_ticker_irq_handler();
}
else {
lp_ticker_arm_cd();
}

// NOTE: lp_ticker_set_interrupt() may get called in lp_ticker_irq_handler();
lp_ticker_irq_handler();

}

static void lp_ticker_arm_cd(void)
static void arm_alarm(uint32_t cd_clk)
{
TIMER_T * timer3_base = (TIMER_T *) NU_MODBASE(timer3_modinit.modname);

// Reset 8-bit PSC counter, 24-bit up counter value and CNTEN bit
timer3_base->CTL |= TIMER_CTL_RSTCNT_Msk;
// One-shot mode, Clock = 1 KHz
uint32_t clk_timer3 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
uint32_t prescale_timer3 = clk_timer3 / TMR3_CLK_PER_SEC - 1;
uint32_t prescale_timer3 = clk_timer3 / NU_TMRCLK_PER_SEC - 1;
MBED_ASSERT((prescale_timer3 != (uint32_t) -1) && prescale_timer3 <= 127);
MBED_ASSERT((clk_timer3 % TMR3_CLK_PER_SEC) == 0);
MBED_ASSERT((clk_timer3 % NU_TMRCLK_PER_SEC) == 0);
// NOTE: TIMER_CTL_CNTDATEN_Msk exists in NUC472, but not in M451. In M451, TIMER_CNT is updated continuously by default.
timer3_base->CTL &= ~(TIMER_CTL_OPMODE_Msk | TIMER_CTL_PSC_Msk/* | TIMER_CTL_CNTDATEN_Msk*/);
timer3_base->CTL |= TIMER_ONESHOT_MODE | prescale_timer3/* | TIMER_CTL_CNTDATEN_Msk*/;

cd_minor_clks = cd_major_minor_clks;
cd_minor_clks = NU_CLAMP(cd_minor_clks, TMR_CMP_MIN, TMR_CMP_MAX);
timer3_base->CMP = cd_minor_clks;


/* NOTE: Because H/W timer requests min compare value, our implementation would have alarm delay of
* (TMR_CMP_MIN - interval_clk) clocks when interval_clk is between [1, TMR_CMP_MIN). */
uint32_t cmp_timer3 = cd_clk;
cmp_timer3 = NU_CLAMP(cmp_timer3, TMR_CMP_MIN, TMR_CMP_MAX);
timer3_base->CMP = cmp_timer3;

TIMER_EnableInt(timer3_base);
TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
/* NOTE: When engine is clocked by low power clock source (LXT/LIRC), we need to wait for 3 engine clocks. */
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

what does engine mean?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@0xc0170 It means just the Timer H/W. For power-saving consideration, H/W is so designed. When its clock source is low power oscillator (LXT/LIRC), wait cycles are needed to avoid the programming pitfall.

wait_us((NU_US_PER_SEC / NU_TMRCLK_PER_SEC) * 3);
TIMER_Start(timer3_base);
}

const ticker_info_t* lp_ticker_get_info()
{
static const ticker_info_t info = {
NU_TMRCLK_PER_SEC / NU_TMRCLK_PER_TICK,
NU_TMR_MAXCNT_BITSIZE
};
return &info;
}

#endif
Loading