Skip to content

895 Update temp directory function in all tests and examples #899

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Aug 13, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
92 changes: 45 additions & 47 deletions examples/segmentation_3d/unet_evaluation_array.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,6 @@

import logging
import os
import shutil
import sys
import tempfile
from glob import glob
Expand All @@ -33,58 +32,57 @@ def main():
config.print_config()
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

tempdir = tempfile.mkdtemp()
print(f"generating synthetic data to {tempdir} (this may take a while)")
for i in range(5):
im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1)
with tempfile.TemporaryDirectory() as tempdir:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think we should avoid this large block of indentation by adding the context from outside of main, something like:

 if __name__ == "__main__":
    with tempfile.TemporaryDirectory() as tempdir:
        main(tempdir)

Copy link
Contributor Author

@Nic-Ma Nic-Ma Aug 13, 2020

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

good point, I will change the examples soon.
Thanks.

print(f"generating synthetic data to {tempdir} (this may take a while)")
for i in range(5):
im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1)

n = nib.Nifti1Image(im, np.eye(4))
nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz"))
n = nib.Nifti1Image(im, np.eye(4))
nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz"))

n = nib.Nifti1Image(seg, np.eye(4))
nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))
n = nib.Nifti1Image(seg, np.eye(4))
nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

images = sorted(glob(os.path.join(tempdir, "im*.nii.gz")))
segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))
images = sorted(glob(os.path.join(tempdir, "im*.nii.gz")))
segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))

# define transforms for image and segmentation
imtrans = Compose([ScaleIntensity(), AddChannel(), ToTensor()])
segtrans = Compose([AddChannel(), ToTensor()])
val_ds = NiftiDataset(images, segs, transform=imtrans, seg_transform=segtrans, image_only=False)
# sliding window inference for one image at every iteration
val_loader = DataLoader(val_ds, batch_size=1, num_workers=1, pin_memory=torch.cuda.is_available())
dice_metric = DiceMetric(include_background=True, to_onehot_y=False, sigmoid=True, reduction="mean")
# define transforms for image and segmentation
imtrans = Compose([ScaleIntensity(), AddChannel(), ToTensor()])
segtrans = Compose([AddChannel(), ToTensor()])
val_ds = NiftiDataset(images, segs, transform=imtrans, seg_transform=segtrans, image_only=False)
# sliding window inference for one image at every iteration
val_loader = DataLoader(val_ds, batch_size=1, num_workers=1, pin_memory=torch.cuda.is_available())
dice_metric = DiceMetric(include_background=True, to_onehot_y=False, sigmoid=True, reduction="mean")

device = torch.device("cuda:0")
model = UNet(
dimensions=3,
in_channels=1,
out_channels=1,
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
num_res_units=2,
).to(device)
device = torch.device("cuda:0")
model = UNet(
dimensions=3,
in_channels=1,
out_channels=1,
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
num_res_units=2,
).to(device)

model.load_state_dict(torch.load("best_metric_model.pth"))
model.eval()
with torch.no_grad():
metric_sum = 0.0
metric_count = 0
saver = NiftiSaver(output_dir="./output")
for val_data in val_loader:
val_images, val_labels = val_data[0].to(device), val_data[1].to(device)
# define sliding window size and batch size for windows inference
roi_size = (96, 96, 96)
sw_batch_size = 4
val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
value = dice_metric(y_pred=val_outputs, y=val_labels)
metric_count += len(value)
metric_sum += value.item() * len(value)
val_outputs = (val_outputs.sigmoid() >= 0.5).float()
saver.save_batch(val_outputs, val_data[2])
metric = metric_sum / metric_count
print("evaluation metric:", metric)
shutil.rmtree(tempdir)
model.load_state_dict(torch.load("best_metric_model.pth"))
model.eval()
with torch.no_grad():
metric_sum = 0.0
metric_count = 0
saver = NiftiSaver(output_dir="./output")
for val_data in val_loader:
val_images, val_labels = val_data[0].to(device), val_data[1].to(device)
# define sliding window size and batch size for windows inference
roi_size = (96, 96, 96)
sw_batch_size = 4
val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
value = dice_metric(y_pred=val_outputs, y=val_labels)
metric_count += len(value)
metric_sum += value.item() * len(value)
val_outputs = (val_outputs.sigmoid() >= 0.5).float()
saver.save_batch(val_outputs, val_data[2])
metric = metric_sum / metric_count
print("evaluation metric:", metric)


if __name__ == "__main__":
Expand Down
130 changes: 64 additions & 66 deletions examples/segmentation_3d/unet_evaluation_dict.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,6 @@

import logging
import os
import shutil
import sys
import tempfile
from glob import glob
Expand All @@ -34,71 +33,70 @@ def main():
monai.config.print_config()
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

tempdir = tempfile.mkdtemp()
print(f"generating synthetic data to {tempdir} (this may take a while)")
for i in range(5):
im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1)

n = nib.Nifti1Image(im, np.eye(4))
nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz"))

n = nib.Nifti1Image(seg, np.eye(4))
nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

images = sorted(glob(os.path.join(tempdir, "im*.nii.gz")))
segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))
val_files = [{"img": img, "seg": seg} for img, seg in zip(images, segs)]

# define transforms for image and segmentation
val_transforms = Compose(
[
LoadNiftid(keys=["img", "seg"]),
AsChannelFirstd(keys=["img", "seg"], channel_dim=-1),
ScaleIntensityd(keys="img"),
ToTensord(keys=["img", "seg"]),
]
)
val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
# sliding window inference need to input 1 image in every iteration
val_loader = DataLoader(val_ds, batch_size=1, num_workers=4, collate_fn=list_data_collate)
dice_metric = DiceMetric(include_background=True, to_onehot_y=False, sigmoid=True, reduction="mean")

# try to use all the available GPUs
devices = get_devices_spec(None)
model = UNet(
dimensions=3,
in_channels=1,
out_channels=1,
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
num_res_units=2,
).to(devices[0])

model.load_state_dict(torch.load("best_metric_model.pth"))

# if we have multiple GPUs, set data parallel to execute sliding window inference
if len(devices) > 1:
model = torch.nn.DataParallel(model, device_ids=devices)

model.eval()
with torch.no_grad():
metric_sum = 0.0
metric_count = 0
saver = NiftiSaver(output_dir="./output")
for val_data in val_loader:
val_images, val_labels = val_data["img"].to(devices[0]), val_data["seg"].to(devices[0])
# define sliding window size and batch size for windows inference
roi_size = (96, 96, 96)
sw_batch_size = 4
val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
value = dice_metric(y_pred=val_outputs, y=val_labels)
metric_count += len(value)
metric_sum += value.item() * len(value)
val_outputs = (val_outputs.sigmoid() >= 0.5).float()
saver.save_batch(val_outputs, val_data["img_meta_dict"])
metric = metric_sum / metric_count
print("evaluation metric:", metric)
shutil.rmtree(tempdir)
with tempfile.TemporaryDirectory() as tempdir:
print(f"generating synthetic data to {tempdir} (this may take a while)")
for i in range(5):
im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1)

n = nib.Nifti1Image(im, np.eye(4))
nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz"))

n = nib.Nifti1Image(seg, np.eye(4))
nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

images = sorted(glob(os.path.join(tempdir, "im*.nii.gz")))
segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))
val_files = [{"img": img, "seg": seg} for img, seg in zip(images, segs)]

# define transforms for image and segmentation
val_transforms = Compose(
[
LoadNiftid(keys=["img", "seg"]),
AsChannelFirstd(keys=["img", "seg"], channel_dim=-1),
ScaleIntensityd(keys="img"),
ToTensord(keys=["img", "seg"]),
]
)
val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
# sliding window inference need to input 1 image in every iteration
val_loader = DataLoader(val_ds, batch_size=1, num_workers=4, collate_fn=list_data_collate)
dice_metric = DiceMetric(include_background=True, to_onehot_y=False, sigmoid=True, reduction="mean")

# try to use all the available GPUs
devices = get_devices_spec(None)
model = UNet(
dimensions=3,
in_channels=1,
out_channels=1,
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
num_res_units=2,
).to(devices[0])

model.load_state_dict(torch.load("best_metric_model.pth"))

# if we have multiple GPUs, set data parallel to execute sliding window inference
if len(devices) > 1:
model = torch.nn.DataParallel(model, device_ids=devices)

model.eval()
with torch.no_grad():
metric_sum = 0.0
metric_count = 0
saver = NiftiSaver(output_dir="./output")
for val_data in val_loader:
val_images, val_labels = val_data["img"].to(devices[0]), val_data["seg"].to(devices[0])
# define sliding window size and batch size for windows inference
roi_size = (96, 96, 96)
sw_batch_size = 4
val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
value = dice_metric(y_pred=val_outputs, y=val_labels)
metric_count += len(value)
metric_sum += value.item() * len(value)
val_outputs = (val_outputs.sigmoid() >= 0.5).float()
saver.save_batch(val_outputs, val_data["img_meta_dict"])
metric = metric_sum / metric_count
print("evaluation metric:", metric)


if __name__ == "__main__":
Expand Down
Loading