Skip to content

21 add DICOM format in the LoadImage tutorial #23

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Sep 17, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
160 changes: 111 additions & 49 deletions load_medical_images.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -66,33 +66,11 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"MONAI version: 0.2.0\n",
"Python version: 3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 19:07:31) [GCC 7.3.0]\n",
"Numpy version: 1.18.1\n",
"Pytorch version: 1.6.0\n",
"\n",
"Optional dependencies:\n",
"Pytorch Ignite version: NOT INSTALLED or UNKNOWN VERSION.\n",
"Nibabel version: 3.1.1\n",
"scikit-image version: 0.15.0\n",
"Pillow version: 7.2.0\n",
"Tensorboard version: 2.1.0\n",
"\n",
"For details about installing the optional dependencies, please visit:\n",
" https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies\n",
"\n"
]
}
],
"outputs": [],
"source": [
"# Copyright 2020 MONAI Consortium\n",
"# Licensed under the Apache License, Version 2.0 (the \"License\");\n",
Expand Down Expand Up @@ -133,14 +111,14 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load image with default image reader\n",
"## Load Nifti image with default image reader\n",
"MONAI leverages `ITK` as the default image reader, it can support most of the common medical image formats.\n",
"More details, please check: https://github.com/InsightSoftwareConsortium/ITK/tree/master/Modules/IO"
]
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 2,
"metadata": {
"tags": []
},
Expand All @@ -149,23 +127,23 @@
"name": "stdout",
"output_type": "stream",
"text": [
"image data shape:(128, 128, 128)\n",
"meta data:{'ITK_FileNotes': '', 'aux_file': '', 'bitpix': '64', 'cal_max': '0', 'cal_min': '0', 'datatype': '64', 'descrip': '', 'dim[0]': '3', 'dim[1]': '128', 'dim[2]': '128', 'dim[3]': '128', 'dim[4]': '1', 'dim[5]': '1', 'dim[6]': '1', 'dim[7]': '1', 'dim_info': '0', 'intent_code': '0', 'intent_name': '', 'intent_p1': '0', 'intent_p2': '0', 'intent_p3': '0', 'nifti_type': '1', 'pixdim[0]': '0', 'pixdim[1]': '1', 'pixdim[2]': '1', 'pixdim[3]': '1', 'pixdim[4]': '0', 'pixdim[5]': '0', 'pixdim[6]': '0', 'pixdim[7]': '0', 'qform_code': '1', 'qform_code_name': 'NIFTI_XFORM_SCANNER_ANAT', 'qoffset_x': '-0', 'qoffset_y': '-0', 'qoffset_z': '0', 'quatern_b': '0', 'quatern_c': '0', 'quatern_d': '1', 'scl_inter': '0', 'scl_slope': '1', 'sform_code': '0', 'sform_code_name': 'NIFTI_XFORM_UNKNOWN', 'slice_code': '0', 'slice_duration': '0', 'slice_end': '0', 'slice_start': '0', 'srow_x': '0 0 0 0', 'srow_y': '0 0 0 0', 'srow_z': '0 0 0 0', 'toffset': '0', 'vox_offset': '352', 'xyzt_units': '2', 'origin': array([0., 0., 0.]), 'spacing': array([1., 1., 1.]), 'direction': array([[1., 0., 0.],\n",
"image data shape:(64, 128, 96)\n",
"meta data:{'ITK_FileNotes': '', 'aux_file': '', 'bitpix': '64', 'cal_max': '0', 'cal_min': '0', 'datatype': '64', 'descrip': '', 'dim[0]': '3', 'dim[1]': '96', 'dim[2]': '128', 'dim[3]': '64', 'dim[4]': '1', 'dim[5]': '1', 'dim[6]': '1', 'dim[7]': '1', 'dim_info': '0', 'intent_code': '0', 'intent_name': '', 'intent_p1': '0', 'intent_p2': '0', 'intent_p3': '0', 'nifti_type': '1', 'pixdim[0]': '0', 'pixdim[1]': '1', 'pixdim[2]': '1', 'pixdim[3]': '1', 'pixdim[4]': '0', 'pixdim[5]': '0', 'pixdim[6]': '0', 'pixdim[7]': '0', 'qform_code': '1', 'qform_code_name': 'NIFTI_XFORM_SCANNER_ANAT', 'qoffset_x': '-0', 'qoffset_y': '-0', 'qoffset_z': '0', 'quatern_b': '0', 'quatern_c': '0', 'quatern_d': '1', 'scl_inter': '0', 'scl_slope': '1', 'sform_code': '0', 'sform_code_name': 'NIFTI_XFORM_UNKNOWN', 'slice_code': '0', 'slice_duration': '0', 'slice_end': '0', 'slice_start': '0', 'srow_x': '0 0 0 0', 'srow_y': '0 0 0 0', 'srow_z': '0 0 0 0', 'toffset': '0', 'vox_offset': '352', 'xyzt_units': '2', 'origin': array([0., 0., 0.]), 'spacing': array([1., 1., 1.]), 'direction': array([[1., 0., 0.],\n",
" [0., 1., 0.],\n",
" [0., 0., 1.]]), 'original_affine': array([[1., 0., 0., 0.],\n",
" [0., 1., 0., 0.],\n",
" [0., 0., 1., 0.],\n",
" [0., 0., 0., 1.]]), 'affine': array([[1., 0., 0., 0.],\n",
" [0., 1., 0., 0.],\n",
" [0., 0., 1., 0.],\n",
" [0., 0., 0., 1.]]), 'spatial_shape': [128, 128, 128], 'filename_or_obj': '/tmp/tmpg4lwxckh/test_image.nii.gz'}\n"
" [0., 0., 0., 1.]]), 'spatial_shape': [64, 128, 96], 'filename_or_obj': '/tmp/tmpq5gymhdr/test_image.nii.gz'}\n"
]
}
],
"source": [
"# generate 3D test images\n",
"tempdir = tempfile.mkdtemp()\n",
"test_image = np.random.rand(128, 128, 128)\n",
"test_image = np.random.rand(64, 128, 96)\n",
"filename = os.path.join(tempdir, \"test_image.nii.gz\")\n",
"itk_np_view = itk.image_view_from_array(test_image)\n",
"itk.imwrite(itk_np_view, filename)\n",
Expand All @@ -179,31 +157,31 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load a list of images and stack as 1 training item\n",
"## Load a list of Nifti images and stack as 1 training item\n",
"Loading a list of files, stack them together and add a new dimension as first dimension.\n",
"\n",
"And use the meta data of the first image to represent the stacked result."
]
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"image data shape:(3, 128, 128, 128)\n",
"meta data:{'ITK_FileNotes': '', 'aux_file': '', 'bitpix': '64', 'cal_max': '0', 'cal_min': '0', 'datatype': '64', 'descrip': '', 'dim[0]': '3', 'dim[1]': '128', 'dim[2]': '128', 'dim[3]': '128', 'dim[4]': '1', 'dim[5]': '1', 'dim[6]': '1', 'dim[7]': '1', 'dim_info': '0', 'intent_code': '0', 'intent_name': '', 'intent_p1': '0', 'intent_p2': '0', 'intent_p3': '0', 'nifti_type': '1', 'pixdim[0]': '0', 'pixdim[1]': '1', 'pixdim[2]': '1', 'pixdim[3]': '1', 'pixdim[4]': '0', 'pixdim[5]': '0', 'pixdim[6]': '0', 'pixdim[7]': '0', 'qform_code': '1', 'qform_code_name': 'NIFTI_XFORM_SCANNER_ANAT', 'qoffset_x': '-0', 'qoffset_y': '-0', 'qoffset_z': '0', 'quatern_b': '0', 'quatern_c': '0', 'quatern_d': '1', 'scl_inter': '0', 'scl_slope': '1', 'sform_code': '0', 'sform_code_name': 'NIFTI_XFORM_UNKNOWN', 'slice_code': '0', 'slice_duration': '0', 'slice_end': '0', 'slice_start': '0', 'srow_x': '0 0 0 0', 'srow_y': '0 0 0 0', 'srow_z': '0 0 0 0', 'toffset': '0', 'vox_offset': '352', 'xyzt_units': '2', 'origin': array([0., 0., 0.]), 'spacing': array([1., 1., 1.]), 'direction': array([[1., 0., 0.],\n",
"image data shape:(3, 64, 128, 96)\n",
"meta data:{'ITK_FileNotes': '', 'aux_file': '', 'bitpix': '64', 'cal_max': '0', 'cal_min': '0', 'datatype': '64', 'descrip': '', 'dim[0]': '3', 'dim[1]': '96', 'dim[2]': '128', 'dim[3]': '64', 'dim[4]': '1', 'dim[5]': '1', 'dim[6]': '1', 'dim[7]': '1', 'dim_info': '0', 'intent_code': '0', 'intent_name': '', 'intent_p1': '0', 'intent_p2': '0', 'intent_p3': '0', 'nifti_type': '1', 'pixdim[0]': '0', 'pixdim[1]': '1', 'pixdim[2]': '1', 'pixdim[3]': '1', 'pixdim[4]': '0', 'pixdim[5]': '0', 'pixdim[6]': '0', 'pixdim[7]': '0', 'qform_code': '1', 'qform_code_name': 'NIFTI_XFORM_SCANNER_ANAT', 'qoffset_x': '-0', 'qoffset_y': '-0', 'qoffset_z': '0', 'quatern_b': '0', 'quatern_c': '0', 'quatern_d': '1', 'scl_inter': '0', 'scl_slope': '1', 'sform_code': '0', 'sform_code_name': 'NIFTI_XFORM_UNKNOWN', 'slice_code': '0', 'slice_duration': '0', 'slice_end': '0', 'slice_start': '0', 'srow_x': '0 0 0 0', 'srow_y': '0 0 0 0', 'srow_z': '0 0 0 0', 'toffset': '0', 'vox_offset': '352', 'xyzt_units': '2', 'origin': array([0., 0., 0.]), 'spacing': array([1., 1., 1.]), 'direction': array([[1., 0., 0.],\n",
" [0., 1., 0.],\n",
" [0., 0., 1.]]), 'original_affine': array([[1., 0., 0., 0.],\n",
" [0., 1., 0., 0.],\n",
" [0., 0., 1., 0.],\n",
" [0., 0., 0., 1.]]), 'affine': array([[1., 0., 0., 0.],\n",
" [0., 1., 0., 0.],\n",
" [0., 0., 1., 0.],\n",
" [0., 0., 0., 1.]]), 'spatial_shape': [128, 128, 128], 'filename_or_obj': '/tmp/tmpg4lwxckh/test_image.nii.gz'}\n"
" [0., 0., 0., 1.]]), 'spatial_shape': [64, 128, 96], 'filename_or_obj': '/tmp/tmpq5gymhdr/test_image.nii.gz'}\n"
]
}
],
Expand All @@ -219,6 +197,90 @@
"print(f\"meta data:{meta}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load 3D image in DICOM format"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"image data shape:(64, 128, 96)\n",
"meta data:{'0008|0016': '1.2.840.10008.5.1.4.1.1.7.2', '0008|0018': '1.2.826.0.1.3680043.2.1125.1.64732409224407717340688313759116819', '0008|0020': '20200917', '0008|0030': '012951.461675 ', '0008|0050': '', '0008|0060': 'OT', '0008|0090': '', '0010|0010': '', '0010|0020': '', '0010|0030': '', '0010|0040': '', '0020|000d': '1.2.826.0.1.3680043.2.1125.1.22199909824554379284164927198357157', '0020|000e': '1.2.826.0.1.3680043.2.1125.1.64330868579047092348166172965815757', '0020|0010': '', '0020|0011': '', '0020|0013': '', '0020|0052': '1.2.826.0.1.3680043.2.1125.1.36887462277578362563842268362959985', '0028|0002': '1', '0028|0004': 'MONOCHROME2 ', '0028|0008': '64', '0028|0009': '(5200,9230)', '0028|0010': '128', '0028|0011': '96', '0028|0100': '8', '0028|0101': '8', '0028|0102': '7', '0028|0103': '0', '0028|1052': '0 ', '0028|1053': '1 ', '0028|1054': 'US', 'origin': array([0., 0., 0.]), 'spacing': array([1., 1., 1.]), 'direction': array([[1., 0., 0.],\n",
" [0., 1., 0.],\n",
" [0., 0., 1.]]), 'original_affine': array([[1., 0., 0., 0.],\n",
" [0., 1., 0., 0.],\n",
" [0., 0., 1., 0.],\n",
" [0., 0., 0., 1.]]), 'affine': array([[1., 0., 0., 0.],\n",
" [0., 1., 0., 0.],\n",
" [0., 0., 1., 0.],\n",
" [0., 0., 0., 1.]]), 'spatial_shape': [64, 128, 96], 'filename_or_obj': '/tmp/tmpq5gymhdr/test_image.dcm'}\n"
]
}
],
"source": [
"filename = os.path.join(tempdir, \"test_image.dcm\")\n",
"dcm_image = np.random.randint(256, size=(64, 128, 96)).astype(np.uint8())\n",
"itk_np_view = itk.image_view_from_array(dcm_image)\n",
"itk.imwrite(itk_np_view, filename)\n",
"data, meta = LoadImage()(filename)\n",
"\n",
"print(f\"image data shape:{data.shape}\")\n",
"print(f\"meta data:{meta}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load a list of DICOM images and stack as 1 training item\n",
"Loading a list of files, stack them together and add a new dimension as first dimension.\n",
"\n",
"And use the meta data of the first image to represent the stacked result."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"image data shape:(3, 64, 128, 96)\n",
"meta data:{'0008|0016': '1.2.840.10008.5.1.4.1.1.7.2', '0008|0018': '1.2.826.0.1.3680043.2.1125.1.55124182629917658983046437541692429', '0008|0020': '20200917', '0008|0030': '012953.377970 ', '0008|0050': '', '0008|0060': 'OT', '0008|0090': '', '0010|0010': '', '0010|0020': '', '0010|0030': '', '0010|0040': '', '0020|000d': '1.2.826.0.1.3680043.2.1125.1.54570928137383298712421968711546946', '0020|000e': '1.2.826.0.1.3680043.2.1125.1.79105954593572939973262028207196688', '0020|0010': '', '0020|0011': '', '0020|0013': '', '0020|0052': '1.2.826.0.1.3680043.2.1125.1.37569814707528773722727172695078933', '0028|0002': '1', '0028|0004': 'MONOCHROME2 ', '0028|0008': '64', '0028|0009': '(5200,9230)', '0028|0010': '128', '0028|0011': '96', '0028|0100': '8', '0028|0101': '8', '0028|0102': '7', '0028|0103': '0', '0028|1052': '0 ', '0028|1053': '1 ', '0028|1054': 'US', 'origin': array([0., 0., 0.]), 'spacing': array([1., 1., 1.]), 'direction': array([[1., 0., 0.],\n",
" [0., 1., 0.],\n",
" [0., 0., 1.]]), 'original_affine': array([[1., 0., 0., 0.],\n",
" [0., 1., 0., 0.],\n",
" [0., 0., 1., 0.],\n",
" [0., 0., 0., 1.]]), 'affine': array([[1., 0., 0., 0.],\n",
" [0., 1., 0., 0.],\n",
" [0., 0., 1., 0.],\n",
" [0., 0., 0., 1.]]), 'spatial_shape': [64, 128, 96], 'filename_or_obj': '/tmp/tmpq5gymhdr/test_image.dcm'}\n"
]
}
],
"source": [
"filenames = [\"test_image.dcm\", \"test_image2.dcm\", \"test_image3.dcm\"]\n",
"for i, name in enumerate(filenames):\n",
" filenames[i] = os.path.join(tempdir, name)\n",
" itk_np_view = itk.image_view_from_array(dcm_image)\n",
" itk.imwrite(itk_np_view, filenames[i])\n",
"data, meta = LoadImage()(filenames)\n",
"\n",
"print(f\"image data shape:{data.shape}\")\n",
"print(f\"meta data:{meta}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand All @@ -228,7 +290,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 6,
"metadata": {
"tags": []
},
Expand All @@ -237,18 +299,18 @@
"name": "stdout",
"output_type": "stream",
"text": [
"image data shape:(256, 256)\n",
"image data shape:(128, 256)\n",
"meta data:{'origin': array([0., 0.]), 'spacing': array([1., 1.]), 'direction': array([[1., 0.],\n",
" [0., 1.]]), 'original_affine': array([[1., 0., 0.],\n",
" [0., 1., 0.],\n",
" [0., 0., 1.]]), 'affine': array([[1., 0., 0.],\n",
" [0., 1., 0.],\n",
" [0., 0., 1.]]), 'spatial_shape': [256, 256], 'filename_or_obj': '/tmp/tmpg4lwxckh/test_image.png'}\n"
" [0., 0., 1.]]), 'spatial_shape': [128, 256], 'filename_or_obj': '/tmp/tmpq5gymhdr/test_image.png'}\n"
]
}
],
"source": [
"test_image = np.random.randint(0, 256, size=[256, 256])\n",
"test_image = np.random.randint(0, 256, size=[128, 256])\n",
"filename = os.path.join(tempdir, \"test_image.png\")\n",
"Image.fromarray(test_image.astype(\"uint8\")).save(filename)\n",
"data, meta = LoadImage()(filename)\n",
Expand All @@ -272,26 +334,26 @@
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"image data shape:(256, 256)\n",
"image data shape:(128, 256)\n",
"meta data:{'origin': array([0., 0.]), 'spacing': array([1., 1.]), 'direction': array([[1., 0.],\n",
" [0., 1.]]), 'original_affine': array([[1., 0., 0.],\n",
" [0., 1., 0.],\n",
" [0., 0., 1.]]), 'affine': array([[1., 0., 0.],\n",
" [0., 1., 0.],\n",
" [0., 0., 1.]]), 'spatial_shape': [256, 256], 'filename_or_obj': '/tmp/tmpg4lwxckh/test_image.png'}\n"
" [0., 0., 1.]]), 'spatial_shape': [128, 256], 'filename_or_obj': '/tmp/tmpq5gymhdr/test_image.png'}\n"
]
}
],
"source": [
"loader = LoadImage()\n",
"loader.register(ITKReader(c_order_axis_indexing=True))\n",
"loader.register(ITKReader())\n",
"data, meta = loader(filename)\n",
"\n",
"print(f\"image data shape:{data.shape}\")\n",
Expand All @@ -310,15 +372,15 @@
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"image data shape:(256, 256, 2)\n",
"meta data:{'format': None, 'mode': 'LA', 'width': 256, 'height': 256, 'info': {}, 'spatial_shape': [256, 256], 'filename_or_obj': '/tmp/tmpg4lwxckh/test_image.png'}\n"
"image data shape:(128, 256, 2)\n",
"meta data:{'format': None, 'mode': 'LA', 'width': 256, 'height': 128, 'info': {}, 'spatial_shape': [256, 128], 'filename_or_obj': '/tmp/tmpq5gymhdr/test_image.png'}\n"
]
}
],
Expand All @@ -340,7 +402,7 @@
},
{
"cell_type": "code",
"execution_count": 23,
"execution_count": 9,
"metadata": {
"tags": []
},
Expand All @@ -355,7 +417,7 @@
" [0., 1., 0.],\n",
" [0., 0., 1.]]), 'affine': array([[1., 0., 0.],\n",
" [0., 1., 0.],\n",
" [0., 0., 1.]]), 'spatial_shape': [256, 256], 'filename_or_obj': '/tmp/tmpg4lwxckh/test_image.png'}\n"
" [0., 0., 1.]]), 'spatial_shape': [128, 256], 'filename_or_obj': '/tmp/tmpq5gymhdr/test_image.png'}\n"
]
}
],
Expand Down Expand Up @@ -383,7 +445,7 @@
},
{
"cell_type": "code",
"execution_count": 27,
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
Expand Down