Skip to content

change: include workflow integ tests with clarify and debugger enabled #2024

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 9 commits into from
Dec 15, 2020
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
104 changes: 104 additions & 0 deletions tests/integ/test_workflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,12 +16,18 @@
import os
import re
import time
import uuid

import boto3
import pytest

from botocore.config import Config
from botocore.exceptions import WaiterError
from sagemaker.debugger import (
DebuggerHookConfig,
Rule,
rule_configs,
)
from sagemaker.inputs import CreateModelInput, TrainingInput
from sagemaker.model import Model
from sagemaker.processing import ProcessingInput, ProcessingOutput
Expand Down Expand Up @@ -401,3 +407,101 @@ def test_conditional_pytorch_training_model_registration(
pipeline.delete()
except Exception:
pass


def test_training_job_with_debugger(
sagemaker_session,
pipeline_name,
role,
):
instance_count = ParameterInteger(name="InstanceCount", default_value=1)
instance_type = ParameterString(name="InstanceType", default_value="ml.m5.xlarge")

rules = [
Rule.sagemaker(rule_configs.vanishing_gradient()),
Rule.sagemaker(base_config=rule_configs.all_zero(), rule_parameters={"tensor_regex": ".*"}),
Rule.sagemaker(rule_configs.loss_not_decreasing()),
]
debugger_hook_config = DebuggerHookConfig(
s3_output_path=os.path.join(
"s3://", sagemaker_session.default_bucket(), str(uuid.uuid4()), "tensors"
)
)

base_dir = os.path.join(DATA_DIR, "pytorch_mnist")
script_path = os.path.join(base_dir, "mnist.py")
input_path = sagemaker_session.upload_data(
path=os.path.join(base_dir, "training"),
key_prefix="integ-test-data/pytorch_mnist/training",
)
inputs = TrainingInput(s3_data=input_path)

pytorch_estimator = PyTorch(
entry_point=script_path,
role="SageMakerRole",
framework_version="1.5.0",
py_version="py3",
instance_count=instance_count,
instance_type=instance_type,
sagemaker_session=sagemaker_session,
rules=rules,
debugger_hook_config=debugger_hook_config,
)

step_train = TrainingStep(
name="pytorch-train",
estimator=pytorch_estimator,
inputs=inputs,
)

pipeline = Pipeline(
name=pipeline_name,
parameters=[instance_count, instance_type],
steps=[step_train],
sagemaker_session=sagemaker_session,
)

try:
response = pipeline.create(role)
create_arn = response["PipelineArn"]

execution = pipeline.start(parameters={})
response = execution.describe()
assert response["PipelineArn"] == create_arn

try:
execution.wait(delay=10, max_attempts=60)
except WaiterError:
pass
execution_steps = execution.list_steps()
training_job_arn = execution_steps[0]["Metadata"]["TrainingJob"]["Arn"]
job_description = sagemaker_session.sagemaker_client.describe_training_job(
TrainingJobName=training_job_arn.split("/")[1]
)

assert len(execution_steps) == 1
assert execution_steps[0]["StepName"] == "pytorch-train"
assert execution_steps[0]["StepStatus"] == "Succeeded"

for index, rule in enumerate(rules):
assert (
job_description["DebugRuleConfigurations"][index]["RuleConfigurationName"]
== rule.name
)
assert (
job_description["DebugRuleConfigurations"][index]["RuleEvaluatorImage"]
== rule.image_uri
)
assert job_description["DebugRuleConfigurations"][index]["VolumeSizeInGB"] == 0
assert (
job_description["DebugRuleConfigurations"][index]["RuleParameters"][
"rule_to_invoke"
]
== rule.rule_parameters["rule_to_invoke"]
)
assert job_description["DebugHookConfig"] == debugger_hook_config._to_request_dict()
finally:
try:
pipeline.delete()
except Exception:
pass
Loading