Skip to content

feat: combined model + script artifact #3715

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 12 commits into from
Mar 24, 2023
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 25 additions & 6 deletions src/sagemaker/jumpstart/artifacts.py
Original file line number Diff line number Diff line change
Expand Up @@ -173,10 +173,11 @@ def _retrieve_image_uri(
def _retrieve_model_uri(
model_id: str,
model_version: str,
model_scope: Optional[str],
region: Optional[str],
tolerate_vulnerable_model: bool,
tolerate_deprecated_model: bool,
model_scope: Optional[str] = None,
region: Optional[str] = None,
tolerate_vulnerable_model: bool = False,
tolerate_deprecated_model: bool = False,
include_script: bool = False,
):
"""Retrieves the model artifact S3 URI for the model matching the given arguments.

Expand All @@ -197,6 +198,8 @@ def _retrieve_model_uri(
tolerate_deprecated_model (bool): True if deprecated versions of model
specifications should be tolerated (exception not raised). If False, raises
an exception if the version of the model is deprecated.
include_script (bool): True if script artifact should be packaged alongside model
tarball. (Default: False).
Returns:
str: the model artifact S3 URI for the corresponding model.

Expand All @@ -205,6 +208,8 @@ def _retrieve_model_uri(
VulnerableJumpStartModelError: If any of the dependencies required by the script have
known security vulnerabilities.
DeprecatedJumpStartModelError: If the version of the model is deprecated.
NotImplementedError: If the combination of arguments doesn't support combined model
and script artifact.
"""
if region is None:
region = JUMPSTART_DEFAULT_REGION_NAME
Expand All @@ -218,10 +223,24 @@ def _retrieve_model_uri(
tolerate_deprecated_model=tolerate_deprecated_model,
)

error_msg_no_combined_artifact = (
"No combined script + model tarball available "
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: No combined script and model tarball [...]

f"for {model_id} with version {model_version} for {model_scope}."
)

if model_scope == JumpStartScriptScope.INFERENCE:
model_artifact_key = model_specs.hosting_artifact_key
if not include_script:
model_artifact_key = model_specs.hosting_artifact_key
else:
model_artifact_key = getattr(model_specs, "hosting_prepacked_artifact_key", None)
if model_artifact_key is None:
raise NotImplementedError(error_msg_no_combined_artifact)

elif model_scope == JumpStartScriptScope.TRAINING:
model_artifact_key = model_specs.training_artifact_key
if not include_script:
model_artifact_key = model_specs.training_artifact_key
else:
raise NotImplementedError(error_msg_no_combined_artifact)

bucket = os.environ.get(
ENV_VARIABLE_JUMPSTART_MODEL_ARTIFACT_BUCKET_OVERRIDE
Expand Down
4 changes: 4 additions & 0 deletions src/sagemaker/jumpstart/types.py
Original file line number Diff line number Diff line change
Expand Up @@ -293,6 +293,7 @@ class JumpStartModelSpecs(JumpStartDataHolderType):
"training_vulnerabilities",
"deprecated",
"metrics",
"hosting_prepacked_artifact_key",
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Would you be opposed to adding the training_prepacked_script_key in this PR along with similar logic for retrieval?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Let's do that in another PR

]

def __init__(self, spec: Dict[str, Any]):
Expand Down Expand Up @@ -330,6 +331,9 @@ def from_json(self, json_obj: Dict[str, Any]) -> None:
self.training_vulnerabilities: List[str] = json_obj["training_vulnerabilities"]
self.deprecated: bool = bool(json_obj["deprecated"])
self.metrics: Optional[List[Dict[str, str]]] = json_obj.get("metrics", None)
self.hosting_prepacked_artifact_key: Optional[str] = json_obj.get(
"hosting_prepacked_artifact_key", None
)

if self.training_supported:
self.training_ecr_specs: JumpStartECRSpecs = JumpStartECRSpecs(
Expand Down
6 changes: 6 additions & 0 deletions src/sagemaker/model_uris.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@ def retrieve(
model_scope: Optional[str] = None,
tolerate_vulnerable_model: bool = False,
tolerate_deprecated_model: bool = False,
include_script: bool = False,
) -> str:
"""Retrieves the model artifact Amazon S3 URI for the model matching the given arguments.

Expand All @@ -48,6 +49,8 @@ def retrieve(
tolerate_deprecated_model (bool): ``True`` if deprecated versions of model
specifications should be tolerated without raising an exception. If ``False``, raises
an exception if the version of the model is deprecated. (Default: False).
include_script (bool): True if script artifact should be packaged alongside model
tarball. (Default: False).
Returns:
str: The model artifact S3 URI for the corresponding model.

Expand All @@ -57,6 +60,8 @@ def retrieve(
VulnerableJumpStartModelError: If any of the dependencies required by the script have
known security vulnerabilities.
DeprecatedJumpStartModelError: If the version of the model is deprecated.
NotImplementedError: If the combination of arguments doesn't support combined model
and script artifact.
"""
if not jumpstart_utils.is_jumpstart_model_input(model_id, model_version):
raise ValueError("Must specify `model_id` and `model_version` when retrieving model URIs.")
Expand All @@ -68,4 +73,5 @@ def retrieve(
region,
tolerate_vulnerable_model,
tolerate_deprecated_model,
include_script,
)
82 changes: 82 additions & 0 deletions tests/unit/sagemaker/jumpstart/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -1070,6 +1070,88 @@
},
],
},
"huggingface-text2text-flan-t5-xxl-fp16": {
"model_id": "huggingface-text2text-flan-t5-xxl-fp16",
"url": "https://huggingface.co/google/flan-t5-xxl",
"version": "1.0.0",
"min_sdk_version": "2.130.0",
"training_supported": False,
"incremental_training_supported": False,
"hosting_ecr_specs": {
"framework": "pytorch",
"framework_version": "1.12.0",
"py_version": "py38",
"huggingface_transformers_version": "4.17.0",
},
"hosting_artifact_key": "huggingface-infer/infer-huggingface-text2text-flan-t5-xxl-fp16.tar.gz",
"hosting_script_key": "source-directory-tarballs/huggingface/inference/text2text/v1.0.2/sourcedir.tar.gz",
"hosting_prepacked_artifact_key": "huggingface-infer/prepack/v1.0.0/infer-prepack-huggingface-"
"text2text-flan-t5-xxl-fp16.tar.gz",
"hosting_prepacked_artifact_version": "1.0.0",
"inference_vulnerable": False,
"inference_dependencies": [
"accelerate==0.16.0",
"bitsandbytes==0.37.0",
"filelock==3.9.0",
"huggingface-hub==0.12.0",
"regex==2022.7.9",
"tokenizers==0.13.2",
"transformers==4.26.0",
],
"inference_vulnerabilities": [],
"training_vulnerable": False,
"training_dependencies": [],
"training_vulnerabilities": [],
"deprecated": False,
"inference_environment_variables": [
{
"name": "SAGEMAKER_PROGRAM",
"type": "text",
"default": "inference.py",
"scope": "container",
},
{
"name": "SAGEMAKER_SUBMIT_DIRECTORY",
"type": "text",
"default": "/opt/ml/model/code",
"scope": "container",
},
{
"name": "SAGEMAKER_CONTAINER_LOG_LEVEL",
"type": "text",
"default": "20",
"scope": "container",
},
{
"name": "MODEL_CACHE_ROOT",
"type": "text",
"default": "/opt/ml/model",
"scope": "container",
},
{"name": "SAGEMAKER_ENV", "type": "text", "default": "1", "scope": "container"},
{
"name": "SAGEMAKER_MODEL_SERVER_WORKERS",
"type": "text",
"default": "1",
"scope": "container",
},
{
"name": "SAGEMAKER_MODEL_SERVER_TIMEOUT",
"type": "text",
"default": "3600",
"scope": "container",
},
],
"metrics": [],
"default_inference_instance_type": "ml.g5.12xlarge",
"supported_inference_instance_types": [
"ml.g5.12xlarge",
"ml.g5.24xlarge",
"ml.p3.8xlarge",
"ml.p3.16xlarge",
"ml.g4dn.12xlarge",
],
},
}

BASE_SPEC = {
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
from __future__ import absolute_import

from mock.mock import patch

from sagemaker import model_uris
import pytest

from tests.unit.sagemaker.jumpstart.utils import get_prototype_model_spec


@patch("sagemaker.jumpstart.accessors.JumpStartModelsAccessor.get_model_specs")
def test_jumpstart_combined_artifacts(patched_get_model_specs):

patched_get_model_specs.side_effect = get_prototype_model_spec

model_id_combined_model_artifact = "huggingface-text2text-flan-t5-xxl-fp16"

uri = model_uris.retrieve(
region="us-west-2",
model_scope="inference",
model_id=model_id_combined_model_artifact,
model_version="*",
include_script=True,
)
assert (
uri == "s3://jumpstart-cache-prod-us-west-2/huggingface-infer/"
"prepack/v1.0.0/infer-prepack-huggingface-text2text-flan-t5-xxl-fp16.tar.gz"
)

with pytest.raises(NotImplementedError):
model_uris.retrieve(
region="us-west-2",
model_scope="transfer_learning",
model_id=model_id_combined_model_artifact,
model_version="*",
include_script=True,
)

model_id_combined_model_artifact_unsupported = "xgboost-classification-model"

with pytest.raises(NotImplementedError):
model_uris.retrieve(
region="us-west-2",
model_scope="inference",
model_id=model_id_combined_model_artifact_unsupported,
model_version="*",
include_script=True,
)