Skip to content

feat: SkipModelValidation in modelRegistry #4124

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Sep 19, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions src/sagemaker/chainer/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -169,6 +169,7 @@ def register(
framework_version: Optional[Union[str, PipelineVariable]] = None,
nearest_model_name: Optional[Union[str, PipelineVariable]] = None,
data_input_configuration: Optional[Union[str, PipelineVariable]] = None,
skip_model_validation: Optional[Union[str, PipelineVariable]] = None,
):
"""Creates a model package for creating SageMaker models or listing on Marketplace.

Expand Down Expand Up @@ -216,6 +217,8 @@ def register(
benchmarked by Amazon SageMaker Inference Recommender (default: None).
data_input_configuration (str or PipelineVariable): Input object for the model
(default: None).
skip_model_validation (str or PipelineVariable): Indicates if you want to skip model
validation. Values can be "All" or "None" (default: None).

Returns:
str: A string of SageMaker Model Package ARN.
Expand Down Expand Up @@ -254,6 +257,7 @@ def register(
framework_version=framework_version or self.framework_version,
nearest_model_name=nearest_model_name,
data_input_configuration=data_input_configuration,
skip_model_validation=skip_model_validation,
)

def prepare_container_def(
Expand Down
4 changes: 4 additions & 0 deletions src/sagemaker/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -1684,6 +1684,7 @@ def register(
framework_version=None,
nearest_model_name=None,
data_input_configuration=None,
skip_model_validation=None,
**kwargs,
):
"""Creates a model package for creating SageMaker models or listing on Marketplace.
Expand Down Expand Up @@ -1729,6 +1730,8 @@ def register(
nearest_model_name (str): Name of a pre-trained machine learning benchmarked by
Amazon SageMaker Inference Recommender (default: None).
data_input_configuration (str): Input object for the model (default: None).
skip_model_validation (str): Indicates if you want to skip model validation.
Values can be "All" or "None" (default: None).
**kwargs: Passed to invocation of ``create_model()``. Implementations may customize
``create_model()`` to accept ``**kwargs`` to customize model creation during
deploy. For more, see the implementation docs.
Expand Down Expand Up @@ -1772,6 +1775,7 @@ def register(
framework_version=framework_version,
nearest_model_name=nearest_model_name,
data_input_configuration=data_input_configuration,
skip_model_validation=skip_model_validation,
)

@property
Expand Down
4 changes: 4 additions & 0 deletions src/sagemaker/huggingface/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -353,6 +353,7 @@ def register(
framework_version: Optional[Union[str, PipelineVariable]] = None,
nearest_model_name: Optional[Union[str, PipelineVariable]] = None,
data_input_configuration: Optional[Union[str, PipelineVariable]] = None,
skip_model_validation: Optional[Union[str, PipelineVariable]] = None,
):
"""Creates a model package for creating SageMaker models or listing on Marketplace.

Expand Down Expand Up @@ -401,6 +402,8 @@ def register(
benchmarked by Amazon SageMaker Inference Recommender (default: None).
data_input_configuration (str or PipelineVariable): Input object for the model
(default: None).
skip_model_validation (str or PipelineVariable): Indicates if you want to skip model
validation. Values can be "All" or "None" (default: None).

Returns:
A `sagemaker.model.ModelPackage` instance.
Expand Down Expand Up @@ -447,6 +450,7 @@ def register(
],
nearest_model_name=nearest_model_name,
data_input_configuration=data_input_configuration,
skip_model_validation=skip_model_validation,
)

def prepare_container_def(
Expand Down
4 changes: 4 additions & 0 deletions src/sagemaker/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -400,6 +400,7 @@ def register(
framework_version: Optional[Union[str, PipelineVariable]] = None,
nearest_model_name: Optional[Union[str, PipelineVariable]] = None,
data_input_configuration: Optional[Union[str, PipelineVariable]] = None,
skip_model_validation: Optional[Union[str, PipelineVariable]] = None,
):
"""Creates a model package for creating SageMaker models or listing on Marketplace.

Expand Down Expand Up @@ -447,6 +448,8 @@ def register(
benchmarked by Amazon SageMaker Inference Recommender (default: None).
data_input_configuration (str or PipelineVariable): Input object for the model
(default: None).
skip_model_validation (str or PipelineVariable): Indicates if you want to skip model
validation. Values can be "All" or "None" (default: None).

Returns:
A `sagemaker.model.ModelPackage` instance or pipeline step arguments
Expand Down Expand Up @@ -497,6 +500,7 @@ def register(
domain=domain,
sample_payload_url=sample_payload_url,
task=task,
skip_model_validation=skip_model_validation,
)
model_package = self.sagemaker_session.create_model_package_from_containers(
**model_pkg_args
Expand Down
4 changes: 4 additions & 0 deletions src/sagemaker/mxnet/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -171,6 +171,7 @@ def register(
framework_version: Optional[Union[str, PipelineVariable]] = None,
nearest_model_name: Optional[Union[str, PipelineVariable]] = None,
data_input_configuration: Optional[Union[str, PipelineVariable]] = None,
skip_model_validation: Optional[Union[str, PipelineVariable]] = None,
):
"""Creates a model package for creating SageMaker models or listing on Marketplace.

Expand Down Expand Up @@ -218,6 +219,8 @@ def register(
benchmarked by Amazon SageMaker Inference Recommender (default: None).
data_input_configuration (str or PipelineVariable): Input object for the model
(default: None).
skip_model_validation (str or PipelineVariable): Indicates if you want to skip model
validation. Values can be "All" or "None" (default: None).

Returns:
A `sagemaker.model.ModelPackage` instance.
Expand Down Expand Up @@ -256,6 +259,7 @@ def register(
framework_version=framework_version or self.framework_version,
nearest_model_name=nearest_model_name,
data_input_configuration=data_input_configuration,
skip_model_validation=skip_model_validation,
)

def prepare_container_def(
Expand Down
4 changes: 4 additions & 0 deletions src/sagemaker/pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -356,6 +356,7 @@ def register(
framework_version: Optional[Union[str, PipelineVariable]] = None,
nearest_model_name: Optional[Union[str, PipelineVariable]] = None,
data_input_configuration: Optional[Union[str, PipelineVariable]] = None,
skip_model_validation: Optional[Union[str, PipelineVariable]] = None,
):
"""Creates a model package for creating SageMaker models or listing on Marketplace.

Expand Down Expand Up @@ -403,6 +404,8 @@ def register(
benchmarked by Amazon SageMaker Inference Recommender (default: None).
data_input_configuration (str or PipelineVariable): Input object for the model
(default: None).
skip_model_validation (str or PipelineVariable): Indicates if you want to skip model
validation. Values can be "All" or "None" (default: None).

Returns:
A `sagemaker.model.ModelPackage` instance.
Expand Down Expand Up @@ -448,6 +451,7 @@ def register(
domain=domain,
sample_payload_url=sample_payload_url,
task=task,
skip_model_validation=skip_model_validation,
)

self.sagemaker_session.create_model_package_from_containers(**model_pkg_args)
Expand Down
4 changes: 4 additions & 0 deletions src/sagemaker/pytorch/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -173,6 +173,7 @@ def register(
framework_version: Optional[Union[str, PipelineVariable]] = None,
nearest_model_name: Optional[Union[str, PipelineVariable]] = None,
data_input_configuration: Optional[Union[str, PipelineVariable]] = None,
skip_model_validation: Optional[Union[str, PipelineVariable]] = None,
):
"""Creates a model package for creating SageMaker models or listing on Marketplace.

Expand Down Expand Up @@ -220,6 +221,8 @@ def register(
benchmarked by Amazon SageMaker Inference Recommender (default: None).
data_input_configuration (str or PipelineVariable): Input object for the model
(default: None).
skip_model_validation (str or PipelineVariable): Indicates if you want to skip model
validation. Values can be "All" or "None" (default: None).

Returns:
A `sagemaker.model.ModelPackage` instance.
Expand Down Expand Up @@ -258,6 +261,7 @@ def register(
framework_version=framework_version or self.framework_version,
nearest_model_name=nearest_model_name,
data_input_configuration=data_input_configuration,
skip_model_validation=skip_model_validation,
)

def prepare_container_def(
Expand Down
13 changes: 13 additions & 0 deletions src/sagemaker/session.py
Original file line number Diff line number Diff line change
Expand Up @@ -3648,6 +3648,7 @@ def create_model_package_from_containers(
domain=None,
sample_payload_url=None,
task=None,
skip_model_validation="None",
):
"""Get request dictionary for CreateModelPackage API.

Expand Down Expand Up @@ -3682,6 +3683,8 @@ def create_model_package_from_containers(
task (str): Task values which are supported by Inference Recommender are "FILL_MASK",
"IMAGE_CLASSIFICATION", "OBJECT_DETECTION", "TEXT_GENERATION", "IMAGE_SEGMENTATION",
"CLASSIFICATION", "REGRESSION", "OTHER" (default: None).
skip_model_validation (str): Indicates if you want to skip model validation.
Values can be "All" or "None" (default: None).
"""
if containers:
# Containers are provided. Now we can merge missing entries from config.
Expand Down Expand Up @@ -3737,6 +3740,7 @@ def create_model_package_from_containers(
domain=domain,
sample_payload_url=sample_payload_url,
task=task,
skip_model_validation=skip_model_validation,
)

def submit(request):
Expand Down Expand Up @@ -5764,6 +5768,7 @@ def get_model_package_args(
domain=None,
sample_payload_url=None,
task=None,
skip_model_validation=None,
):
"""Get arguments for create_model_package method.

Expand Down Expand Up @@ -5800,6 +5805,8 @@ def get_model_package_args(
task (str): Task values which are supported by Inference Recommender are "FILL_MASK",
"IMAGE_CLASSIFICATION", "OBJECT_DETECTION", "TEXT_GENERATION", "IMAGE_SEGMENTATION",
"CLASSIFICATION", "REGRESSION", "OTHER" (default: None).
skip_model_validation (str): Indicates if you want to skip model validation.
Values can be "All" or "None" (default: None).

Returns:
dict: A dictionary of method argument names and values.
Expand Down Expand Up @@ -5848,6 +5855,8 @@ def get_model_package_args(
model_package_args["sample_payload_url"] = sample_payload_url
if task is not None:
model_package_args["task"] = task
if skip_model_validation is not None:
model_package_args["skip_model_validation"] = skip_model_validation
return model_package_args


Expand All @@ -5871,6 +5880,7 @@ def get_create_model_package_request(
domain=None,
sample_payload_url=None,
task=None,
skip_model_validation="None",
):
"""Get request dictionary for CreateModelPackage API.

Expand Down Expand Up @@ -5905,6 +5915,8 @@ def get_create_model_package_request(
task (str): Task values which are supported by Inference Recommender are "FILL_MASK",
"IMAGE_CLASSIFICATION", "OBJECT_DETECTION", "TEXT_GENERATION", "IMAGE_SEGMENTATION",
"CLASSIFICATION", "REGRESSION", "OTHER" (default: None).
skip_model_validation (str): Indicates if you want to skip model validation.
Values can be "All" or "None" (default: None).
"""

if all([model_package_name, model_package_group_name]):
Expand Down Expand Up @@ -5974,6 +5986,7 @@ def get_create_model_package_request(
request_dict["InferenceSpecification"] = inference_specification
request_dict["CertifyForMarketplace"] = marketplace_cert
request_dict["ModelApprovalStatus"] = approval_status
request_dict["SkipModelValidation"] = skip_model_validation
return request_dict


Expand Down
4 changes: 4 additions & 0 deletions src/sagemaker/sklearn/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -166,6 +166,7 @@ def register(
framework_version: Optional[Union[str, PipelineVariable]] = None,
nearest_model_name: Optional[Union[str, PipelineVariable]] = None,
data_input_configuration: Optional[Union[str, PipelineVariable]] = None,
skip_model_validation: Optional[Union[str, PipelineVariable]] = None,
):
"""Creates a model package for creating SageMaker models or listing on Marketplace.

Expand Down Expand Up @@ -213,6 +214,8 @@ def register(
benchmarked by Amazon SageMaker Inference Recommender (default: None).
data_input_configuration (str or PipelineVariable): Input object for the model
(default: None).
skip_model_validation (str or PipelineVariable): Indicates if you want to skip model
validation. Values can be "All" or "None" (default: None).

Returns:
A `sagemaker.model.ModelPackage` instance.
Expand Down Expand Up @@ -251,6 +254,7 @@ def register(
framework_version=framework_version,
nearest_model_name=nearest_model_name,
data_input_configuration=data_input_configuration,
skip_model_validation=skip_model_validation,
)

def prepare_container_def(
Expand Down
4 changes: 4 additions & 0 deletions src/sagemaker/tensorflow/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -228,6 +228,7 @@ def register(
framework_version: Optional[Union[str, PipelineVariable]] = None,
nearest_model_name: Optional[Union[str, PipelineVariable]] = None,
data_input_configuration: Optional[Union[str, PipelineVariable]] = None,
skip_model_validation: Optional[Union[str, PipelineVariable]] = None,
):
"""Creates a model package for creating SageMaker models or listing on Marketplace.

Expand Down Expand Up @@ -275,6 +276,8 @@ def register(
benchmarked by Amazon SageMaker Inference Recommender (default: None).
data_input_configuration (str or PipelineVariable): Input object for the model
(default: None).
skip_model_validation (str or PipelineVariable): Indicates if you want to skip model
validation. Values can be "All" or "None" (default: None).

Returns:
A `sagemaker.model.ModelPackage` instance.
Expand Down Expand Up @@ -313,6 +316,7 @@ def register(
framework_version=framework_version or self.framework_version,
nearest_model_name=nearest_model_name,
data_input_configuration=data_input_configuration,
skip_model_validation=skip_model_validation,
)

def deploy(
Expand Down
5 changes: 5 additions & 0 deletions src/sagemaker/workflow/_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -322,6 +322,7 @@ def __init__(
domain=None,
sample_payload_url=None,
task=None,
skip_model_validation=None,
**kwargs,
):
"""Constructor of a register model step.
Expand Down Expand Up @@ -371,6 +372,8 @@ def __init__(
task (str): Task values which are supported by Inference Recommender are "FILL_MASK",
"IMAGE_CLASSIFICATION", "OBJECT_DETECTION", "TEXT_GENERATION", "IMAGE_SEGMENTATION",
"CLASSIFICATION", "REGRESSION", "OTHER" (default: None).
skip_model_validation (str): Indicates if you want to skip model validation.
Values can be "All" or "None" (default: None).
**kwargs: additional arguments to `create_model`.
"""
super(_RegisterModelStep, self).__init__(
Expand Down Expand Up @@ -407,6 +410,7 @@ def __init__(
self.tags = tags
self.kwargs = kwargs
self.container_def_list = container_def_list
self.skip_model_validation = skip_model_validation

self._properties = Properties(step_name=name, shape_name="DescribeModelPackageOutput")

Expand Down Expand Up @@ -481,6 +485,7 @@ def arguments(self) -> RequestType:
domain=self.domain,
sample_payload_url=self.sample_payload_url,
task=self.task,
skip_model_validation=self.skip_model_validation,
)

request_dict = get_create_model_package_request(**model_package_args)
Expand Down
4 changes: 4 additions & 0 deletions src/sagemaker/workflow/step_collections.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,7 @@ def __init__(
framework_version=None,
nearest_model_name=None,
data_input_configuration=None,
skip_model_validation=None,
**kwargs,
):
"""Construct steps `_RepackModelStep` and `_RegisterModelStep` based on the estimator.
Expand Down Expand Up @@ -145,6 +146,8 @@ def __init__(
nearest_model_name (str): Name of a pre-trained machine learning benchmarked by
Amazon SageMaker Inference Recommender (default: None).
data_input_configuration (str): Input object for the model (default: None).
skip_model_validation (str): Indicates if you want to skip model
validation. Values can be "All" or "None" (default: None).

**kwargs: additional arguments to `create_model`.
"""
Expand Down Expand Up @@ -281,6 +284,7 @@ def __init__(
domain=domain,
sample_payload_url=sample_payload_url,
task=task,
skip_model_validation=skip_model_validation,
**kwargs,
)
if not repack_model:
Expand Down
4 changes: 4 additions & 0 deletions src/sagemaker/xgboost/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -154,6 +154,7 @@ def register(
framework_version: Optional[Union[str, PipelineVariable]] = None,
nearest_model_name: Optional[Union[str, PipelineVariable]] = None,
data_input_configuration: Optional[Union[str, PipelineVariable]] = None,
skip_model_validation: Optional[Union[str, PipelineVariable]] = None,
):
"""Creates a model package for creating SageMaker models or listing on Marketplace.

Expand Down Expand Up @@ -201,6 +202,8 @@ def register(
benchmarked by Amazon SageMaker Inference Recommender (default: None).
data_input_configuration (str or PipelineVariable): Input object for the model
(default: None).
skip_model_validation (str or PipelineVariable): Indicates if you want to skip model
validation. Values can be "All" or "None" (default: None).

Returns:
str: A string of SageMaker Model Package ARN.
Expand Down Expand Up @@ -239,6 +242,7 @@ def register(
framework_version=framework_version,
nearest_model_name=nearest_model_name,
data_input_configuration=data_input_configuration,
skip_model_validation=skip_model_validation,
)

def prepare_container_def(
Expand Down
Loading