Skip to content

feat: inference instance type conditioned on training instance type #4230

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 15 additions & 0 deletions src/sagemaker/instance_types.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@ def retrieve_default(
tolerate_vulnerable_model: bool = False,
tolerate_deprecated_model: bool = False,
sagemaker_session: Session = DEFAULT_JUMPSTART_SAGEMAKER_SESSION,
training_instance_type: Optional[str] = None,
) -> str:
"""Retrieves the default instance type for the model matching the given arguments.

Expand All @@ -56,6 +57,11 @@ def retrieve_default(
object, used for SageMaker interactions. If not
specified, one is created using the default AWS configuration
chain. (Default: sagemaker.jumpstart.constants.DEFAULT_JUMPSTART_SAGEMAKER_SESSION).
training_instance_type (str): In the case of a model fine-tuned on SageMaker, the training
instance type used for the training job that produced the fine-tuned weights.
Optionally supply this to get a inference instance type conditioned
on the training instance, to ensure compatability of training artifact to inference
instance. (Default: None).
Returns:
str: The default instance type to use for the model.

Expand All @@ -78,6 +84,7 @@ def retrieve_default(
tolerate_vulnerable_model,
tolerate_deprecated_model,
sagemaker_session=sagemaker_session,
training_instance_type=training_instance_type,
)


Expand All @@ -89,6 +96,7 @@ def retrieve(
tolerate_vulnerable_model: bool = False,
tolerate_deprecated_model: bool = False,
sagemaker_session: Session = DEFAULT_JUMPSTART_SAGEMAKER_SESSION,
training_instance_type: Optional[str] = None,
) -> List[str]:
"""Retrieves the supported training instance types for the model matching the given arguments.

Expand All @@ -110,6 +118,12 @@ def retrieve(
object, used for SageMaker interactions. If not
specified, one is created using the default AWS configuration
chain. (Default: sagemaker.jumpstart.constants.DEFAULT_JUMPSTART_SAGEMAKER_SESSION).
training_instance_type (str): In the case of a model fine-tuned on SageMaker, the training
instance type used for the training job that produced the fine-tuned weights.
Optionally supply this to get a inference instance type conditioned
on the training instance, to ensure compatability of training artifact to inference
instance. (Default: None).

Returns:
list: The supported instance types to use for the model.

Expand All @@ -132,4 +146,5 @@ def retrieve(
tolerate_vulnerable_model,
tolerate_deprecated_model,
sagemaker_session=sagemaker_session,
training_instance_type=training_instance_type,
)
46 changes: 44 additions & 2 deletions src/sagemaker/jumpstart/artifacts/instance_types.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@ def _retrieve_default_instance_type(
tolerate_vulnerable_model: bool = False,
tolerate_deprecated_model: bool = False,
sagemaker_session: Session = DEFAULT_JUMPSTART_SAGEMAKER_SESSION,
training_instance_type: Optional[str] = None,
) -> str:
"""Retrieves the default instance type for the model.

Expand All @@ -60,6 +61,11 @@ def _retrieve_default_instance_type(
object, used for SageMaker interactions. If not
specified, one is created using the default AWS configuration
chain. (Default: sagemaker.jumpstart.constants.DEFAULT_JUMPSTART_SAGEMAKER_SESSION).
training_instance_type (str): In the case of a model fine-tuned on SageMaker, the training
instance type used for the training job that produced the fine-tuned weights.
Optionally supply this to get a inference instance type conditioned
on the training instance, to ensure compatability of training artifact to inference
instance. (Default: None).
Returns:
str: the default instance type to use for the model or None.

Expand All @@ -82,7 +88,21 @@ def _retrieve_default_instance_type(
)

if scope == JumpStartScriptScope.INFERENCE:
default_instance_type = model_specs.default_inference_instance_type
instance_specific_default_instance_type = (
(
model_specs.training_instance_type_variants.get_instance_specific_default_inference_instance_type( # pylint: disable=C0301 # noqa: E501
training_instance_type
)
)
if training_instance_type is not None
and getattr(model_specs, "training_instance_type_variants", None) is not None
else None
)
default_instance_type = (
instance_specific_default_instance_type
if instance_specific_default_instance_type is not None
else model_specs.default_inference_instance_type
)
elif scope == JumpStartScriptScope.TRAINING:
default_instance_type = model_specs.default_training_instance_type
else:
Expand All @@ -103,6 +123,7 @@ def _retrieve_instance_types(
tolerate_vulnerable_model: bool = False,
tolerate_deprecated_model: bool = False,
sagemaker_session: Session = DEFAULT_JUMPSTART_SAGEMAKER_SESSION,
training_instance_type: Optional[str] = None,
) -> List[str]:
"""Retrieves the supported instance types for the model.

Expand All @@ -126,6 +147,11 @@ def _retrieve_instance_types(
object, used for SageMaker interactions. If not
specified, one is created using the default AWS configuration
chain. (Default: sagemaker.jumpstart.constants.DEFAULT_JUMPSTART_SAGEMAKER_SESSION).
training_instance_type (str): In the case of a model fine-tuned on SageMaker, the training
instance type used for the training job that produced the fine-tuned weights.
Optionally supply this to get a inference instance type conditioned
on the training instance, to ensure compatability of training artifact to inference
instance. (Default: None).
Returns:
list: the supported instance types to use for the model or None.

Expand All @@ -148,8 +174,24 @@ def _retrieve_instance_types(
)

if scope == JumpStartScriptScope.INFERENCE:
instance_types = model_specs.supported_inference_instance_types
default_instance_types = model_specs.supported_inference_instance_types or []
instance_specific_instance_types = (
model_specs.training_instance_type_variants.get_instance_specific_supported_inference_instance_types( # pylint: disable=C0301 # noqa: E501
training_instance_type
)
if training_instance_type is not None
and getattr(model_specs, "training_instance_type_variants", None) is not None
else []
)
instance_types = (
instance_specific_instance_types
if len(instance_specific_instance_types) > 0
else default_instance_types
)

elif scope == JumpStartScriptScope.TRAINING:
if training_instance_type is not None:
raise ValueError("Cannot use `training_instance_type` argument " "with training scope.")
instance_types = model_specs.supported_training_instance_types
else:
raise NotImplementedError(
Expand Down
2 changes: 1 addition & 1 deletion src/sagemaker/jumpstart/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -988,7 +988,6 @@ def deploy(
use_compiled_model (bool): Flag to select whether to use compiled
(optimized) model. (Default: False).
"""

self.orig_predictor_cls = predictor_cls

sagemaker_session = sagemaker_session or self.sagemaker_session
Expand Down Expand Up @@ -1039,6 +1038,7 @@ def deploy(
dependencies=dependencies,
git_config=git_config,
use_compiled_model=use_compiled_model,
training_instance_type=self.instance_type,
)

predictor = super(JumpStartEstimator, self).deploy(
Expand Down
4 changes: 3 additions & 1 deletion src/sagemaker/jumpstart/factory/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -280,6 +280,7 @@ def get_deploy_kwargs(
tolerate_vulnerable_model: Optional[bool] = None,
use_compiled_model: Optional[bool] = None,
model_name: Optional[str] = None,
training_instance_type: Optional[str] = None,
) -> JumpStartEstimatorDeployKwargs:
"""Returns kwargs required to call `deploy` on `sagemaker.estimator.Estimator` object."""

Expand Down Expand Up @@ -313,7 +314,7 @@ def get_deploy_kwargs(
model_id=model_id,
model_from_estimator=True,
model_version=model_version,
instance_type=model_deploy_kwargs.instance_type, # prevent excess logging
instance_type=model_deploy_kwargs.instance_type if training_instance_type is None else None,
region=region,
image_uri=image_uri,
source_dir=source_dir,
Expand All @@ -333,6 +334,7 @@ def get_deploy_kwargs(
git_config=git_config,
tolerate_vulnerable_model=tolerate_vulnerable_model,
tolerate_deprecated_model=tolerate_deprecated_model,
training_instance_type=training_instance_type,
)

estimator_deploy_kwargs: JumpStartEstimatorDeployKwargs = JumpStartEstimatorDeployKwargs(
Expand Down
3 changes: 3 additions & 0 deletions src/sagemaker/jumpstart/factory/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -181,6 +181,7 @@ def _add_instance_type_to_kwargs(kwargs: JumpStartModelInitKwargs) -> JumpStartM
tolerate_deprecated_model=kwargs.tolerate_deprecated_model,
tolerate_vulnerable_model=kwargs.tolerate_vulnerable_model,
sagemaker_session=kwargs.sagemaker_session,
training_instance_type=kwargs.training_instance_type,
)

if orig_instance_type is None:
Expand Down Expand Up @@ -643,6 +644,7 @@ def get_init_kwargs(
dependencies: Optional[List[str]] = None,
git_config: Optional[Dict[str, str]] = None,
model_package_arn: Optional[str] = None,
training_instance_type: Optional[str] = None,
) -> JumpStartModelInitKwargs:
"""Returns kwargs required to instantiate `sagemaker.estimator.Model` object."""

Expand Down Expand Up @@ -671,6 +673,7 @@ def get_init_kwargs(
tolerate_deprecated_model=tolerate_deprecated_model,
tolerate_vulnerable_model=tolerate_vulnerable_model,
model_package_arn=model_package_arn,
training_instance_type=training_instance_type,
)

model_init_kwargs = _add_model_version_to_kwargs(kwargs=model_init_kwargs)
Expand Down
58 changes: 58 additions & 0 deletions src/sagemaker/jumpstart/types.py
Original file line number Diff line number Diff line change
Expand Up @@ -581,6 +581,56 @@ def get_instance_specific_environment_variables(self, instance_type: str) -> Dic

return instance_family_environment_variables

def get_instance_specific_default_inference_instance_type(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

consider renaming: get_training_instane_specific_default_inference_instance_type (it's a mouthful I know)

self, instance_type: str
) -> Optional[str]:
"""Returns instance specific default inference instance type.

Returns None if a model, instance type tuple does not have instance
specific inference instance types.
"""

return self._get_instance_specific_property(
instance_type, "default_inference_instance_type"
)

def get_instance_specific_supported_inference_instance_types(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

same comment please

self, instance_type: str
) -> List[str]:
"""Returns instance specific supported inference instance types.

Returns empty list if a model, instance type tuple does not have instance
specific inference instance types.
"""

if self.variants is None:
return []

instance_specific_inference_instance_types: List[str] = (
self.variants.get(instance_type, {})
.get("properties", {})
.get("supported_inference_instance_types", [])
)

instance_type_family = get_instance_type_family(instance_type)

instance_family_inference_instance_types: List[str] = (
self.variants.get(instance_type_family, {})
.get("properties", {})
.get("supported_inference_instance_types", [])
if instance_type_family not in {"", None}
else []
)

return sorted(
list(
set(
instance_specific_inference_instance_types
+ instance_family_inference_instance_types
)
)
)

def get_image_uri(self, instance_type: str, region: str) -> Optional[str]:
"""Returns image uri from instance type and region.

Expand Down Expand Up @@ -971,6 +1021,7 @@ class JumpStartModelInitKwargs(JumpStartKwargs):
"dependencies",
"git_config",
"model_package_arn",
"training_instance_type",
]

SERIALIZATION_EXCLUSION_SET = {
Expand All @@ -981,6 +1032,7 @@ class JumpStartModelInitKwargs(JumpStartKwargs):
"tolerate_deprecated_model",
"region",
"model_package_arn",
"training_instance_type",
}

def __init__(
Expand Down Expand Up @@ -1009,6 +1061,7 @@ def __init__(
tolerate_vulnerable_model: Optional[bool] = None,
tolerate_deprecated_model: Optional[bool] = None,
model_package_arn: Optional[str] = None,
training_instance_type: Optional[str] = None,
) -> None:
"""Instantiates JumpStartModelInitKwargs object."""

Expand Down Expand Up @@ -1036,6 +1089,7 @@ def __init__(
self.tolerate_deprecated_model = tolerate_deprecated_model
self.tolerate_vulnerable_model = tolerate_vulnerable_model
self.model_package_arn = model_package_arn
self.training_instance_type = training_instance_type


class JumpStartModelDeployKwargs(JumpStartKwargs):
Expand Down Expand Up @@ -1065,6 +1119,7 @@ class JumpStartModelDeployKwargs(JumpStartKwargs):
"tolerate_vulnerable_model",
"tolerate_deprecated_model",
"sagemaker_session",
"training_instance_type",
]

SERIALIZATION_EXCLUSION_SET = {
Expand All @@ -1074,6 +1129,7 @@ class JumpStartModelDeployKwargs(JumpStartKwargs):
"tolerate_deprecated_model",
"tolerate_vulnerable_model",
"sagemaker_session",
"training_instance_type",
}

def __init__(
Expand Down Expand Up @@ -1101,6 +1157,7 @@ def __init__(
tolerate_deprecated_model: Optional[bool] = None,
tolerate_vulnerable_model: Optional[bool] = None,
sagemaker_session: Optional[Session] = None,
training_instance_type: Optional[str] = None,
) -> None:
"""Instantiates JumpStartModelDeployKwargs object."""

Expand All @@ -1127,6 +1184,7 @@ def __init__(
self.tolerate_vulnerable_model = tolerate_vulnerable_model
self.tolerate_deprecated_model = tolerate_deprecated_model
self.sagemaker_session = sagemaker_session
self.training_instance_type = training_instance_type


class JumpStartEstimatorInitKwargs(JumpStartKwargs):
Expand Down
Loading