-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Adding Object2Vec support to SageMaker Python SDK #467
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,247 @@ | ||
# Copyright 2017-2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"). You | ||
# may not use this file except in compliance with the License. A copy of | ||
# the License is located at | ||
# | ||
# http://aws.amazon.com/apache2.0/ | ||
# | ||
# or in the "license" file accompanying this file. This file is | ||
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF | ||
# ANY KIND, either express or implied. See the License for the specific | ||
# language governing permissions and limitations under the License. | ||
from __future__ import absolute_import | ||
|
||
from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase, registry | ||
from sagemaker.amazon.hyperparameter import Hyperparameter as hp # noqa | ||
from sagemaker.amazon.validation import ge, le, isin | ||
from sagemaker.predictor import RealTimePredictor | ||
from sagemaker.model import Model | ||
from sagemaker.session import Session | ||
from sagemaker.vpc_utils import VPC_CONFIG_DEFAULT | ||
|
||
|
||
class Object2Vec(AmazonAlgorithmEstimatorBase): | ||
|
||
repo_name = 'object2vec' | ||
repo_version = 1 | ||
MINI_BATCH_SIZE = 32 | ||
|
||
enc_dim = hp('enc_dim', (ge(4), le(10000)), | ||
'An integer in [4, 10000]', int) | ||
mini_batch_size = hp('mini_batch_size', (ge(1), le(10000)), | ||
'An integer in [1, 10000]', int) | ||
epochs = hp('epochs', (ge(1), le(100)), | ||
'An integer in [1, 100]', int) | ||
early_stopping_patience = hp('early_stopping_patience', (ge(1), le(5)), | ||
'An integer in [1, 5]', int) | ||
early_stopping_tolerance = hp('early_stopping_tolerance', (ge(1e-06), le(0.1)), | ||
'A float in [1e-06, 0.1]', float) | ||
dropout = hp('dropout', (ge(0.0), le(1.0)), | ||
'A float in [0.0, 1.0]', float) | ||
weight_decay = hp('weight_decay', (ge(0.0), le(10000.0)), | ||
'A float in [0.0, 10000.0]', float) | ||
bucket_width = hp('bucket_width', (ge(0), le(100)), | ||
'An integer in [0, 100]', int) | ||
num_classes = hp('num_classes', (ge(2), le(30)), | ||
'An integer in [2, 30]', int) | ||
mlp_layers = hp('mlp_layers', (ge(1), le(10)), | ||
'An integer in [1, 10]', int) | ||
mlp_dim = hp('mlp_dim', (ge(2), le(10000)), | ||
'An integer in [2, 10000]', int) | ||
mlp_activation = hp('mlp_activation', isin("tanh", "relu", "linear"), | ||
'One of "tanh", "relu", "linear"', str) | ||
output_layer = hp('output_layer', isin("softmax", "mean_squared_error"), | ||
'One of "softmax", "mean_squared_error"', str) | ||
optimizer = hp('optimizer', isin("adagrad", "adam", "rmsprop", "sgd", "adadelta"), | ||
'One of "adagrad", "adam", "rmsprop", "sgd", "adadelta"', str) | ||
learning_rate = hp('learning_rate', (ge(1e-06), le(1.0)), | ||
'A float in [1e-06, 1.0]', float) | ||
enc0_network = hp('enc0_network', isin("hcnn", "bilstm", "pooled_embedding"), | ||
'One of "hcnn", "bilstm", "pooled_embedding"', str) | ||
enc1_network = hp('enc1_network', isin("hcnn", "bilstm", "pooled_embedding", "enc0"), | ||
'One of "hcnn", "bilstm", "pooled_embedding", "enc0"', str) | ||
enc0_cnn_filter_width = hp('enc0_cnn_filter_width', (ge(1), le(9)), | ||
'An integer in [1, 9]', int) | ||
enc1_cnn_filter_width = hp('enc1_cnn_filter_width', (ge(1), le(9)), | ||
'An integer in [1, 9]', int) | ||
enc0_max_seq_len = hp('enc0_max_seq_len', (ge(1), le(5000)), | ||
'An integer in [1, 5000]', int) | ||
enc1_max_seq_len = hp('enc1_max_seq_len', (ge(1), le(5000)), | ||
'An integer in [1, 5000]', int) | ||
enc0_token_embedding_dim = hp('enc0_token_embedding_dim', (ge(2), le(1000)), | ||
'An integer in [2, 1000]', int) | ||
enc1_token_embedding_dim = hp('enc1_token_embedding_dim', (ge(2), le(1000)), | ||
'An integer in [2, 1000]', int) | ||
enc0_vocab_size = hp('enc0_vocab_size', (ge(2), le(3000000)), | ||
'An integer in [2, 3000000]', int) | ||
enc1_vocab_size = hp('enc1_vocab_size', (ge(2), le(3000000)), | ||
'An integer in [2, 3000000]', int) | ||
enc0_layers = hp('enc0_layers', (ge(1), le(4)), | ||
'An integer in [1, 4]', int) | ||
enc1_layers = hp('enc1_layers', (ge(1), le(4)), | ||
'An integer in [1, 4]', int) | ||
enc0_freeze_pretrained_embedding = hp('enc0_freeze_pretrained_embedding', (), | ||
'Either True or False', bool) | ||
enc1_freeze_pretrained_embedding = hp('enc1_freeze_pretrained_embedding', (), | ||
'Either True or False', bool) | ||
|
||
def __init__(self, role, train_instance_count, train_instance_type, | ||
epochs, | ||
enc0_max_seq_len, | ||
enc0_vocab_size, | ||
enc_dim=None, | ||
mini_batch_size=None, | ||
early_stopping_patience=None, | ||
early_stopping_tolerance=None, | ||
dropout=None, | ||
weight_decay=None, | ||
bucket_width=None, | ||
num_classes=None, | ||
mlp_layers=None, | ||
mlp_dim=None, | ||
mlp_activation=None, | ||
output_layer=None, | ||
optimizer=None, | ||
learning_rate=None, | ||
enc0_network=None, | ||
enc1_network=None, | ||
enc0_cnn_filter_width=None, | ||
enc1_cnn_filter_width=None, | ||
enc1_max_seq_len=None, | ||
enc0_token_embedding_dim=None, | ||
enc1_token_embedding_dim=None, | ||
enc1_vocab_size=None, | ||
enc0_layers=None, | ||
enc1_layers=None, | ||
enc0_freeze_pretrained_embedding=None, | ||
enc1_freeze_pretrained_embedding=None, | ||
**kwargs): | ||
"""Object2Vec is :class:`Estimator` used for anomaly detection. | ||
|
||
This Estimator may be fit via calls to | ||
:meth:`~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.fit`. | ||
There is an utility :meth:`~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.record_set` that | ||
can be used to upload data to S3 and creates :class:`~sagemaker.amazon.amazon_estimator.RecordSet` to be passed | ||
to the `fit` call. | ||
|
||
After this Estimator is fit, model data is stored in S3. The model may be deployed to an Amazon SageMaker | ||
Endpoint by invoking :meth:`~sagemaker.amazon.estimator.EstimatorBase.deploy`. As well as deploying an | ||
Endpoint, deploy returns a :class:`~sagemaker.amazon.RealTimePredictor` object that can be used | ||
for inference calls using the trained model hosted in the SageMaker Endpoint. | ||
|
||
Object2Vec Estimators can be configured by setting hyperparameters. The available hyperparameters for | ||
Object2Vec are documented below. | ||
|
||
For further information on the AWS Object2Vec algorithm, | ||
please consult AWS technical documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/object2vec.html | ||
|
||
Args: | ||
role (str): An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and | ||
APIs that create Amazon SageMaker endpoints use this role to access | ||
training data and model artifacts. After the endpoint is created, | ||
the inference code might use the IAM role, if accessing AWS resource. | ||
train_instance_count (int): Number of Amazon EC2 instances to use for training. | ||
train_instance_type (str): Type of EC2 instance to use for training, for example, 'ml.c4.xlarge'. | ||
|
||
epochs(int): Total number of epochs for SGD training | ||
enc0_max_seq_len(int): Maximum sequence length | ||
enc0_vocab_size(int): Vocabulary size of tokens | ||
|
||
enc_dim(int): Optional. Dimension of the output of the embedding layer | ||
mini_batch_size(int): Optional. mini batch size for SGD training | ||
early_stopping_patience(int): Optional. The allowed number of consecutive epochs without improvement | ||
before early stopping is applied | ||
early_stopping_tolerance(float): Optional. The value used to determine whether the algorithm has made | ||
improvement between two consecutive epochs for early stopping | ||
dropout(float): Optional. Dropout probability on network layers | ||
weight_decay(float): Optional. Weight decay parameter during optimization | ||
bucket_width(int): Optional. The allowed difference between data sequence length when bucketing is enabled | ||
num_classes(int): Optional. Number of classes for classification training (ignored for regression problems) | ||
mlp_layers(int): Optional. Number of MLP layers in the network | ||
mlp_dim(int): Optional. Dimension of the output of MLP layer | ||
mlp_activation(str): Optional. Type of activation function for the MLP layer | ||
output_layer(str): Optional. Type of output layer | ||
optimizer(str): Optional. Type of optimizer for training | ||
learning_rate(float): Optional. Learning rate for SGD training | ||
enc0_network(str): Optional. Network model of encoder "enc0" | ||
enc1_network(str): Optional. Network model of encoder "enc1" | ||
enc0_cnn_filter_width(int): Optional. CNN filter width | ||
enc1_cnn_filter_width(int): Optional. CNN filter width | ||
enc1_max_seq_len(int): Optional. Maximum sequence length | ||
enc0_token_embedding_dim(int): Optional. Output dimension of token embedding layer | ||
enc1_token_embedding_dim(int): Optional. Output dimension of token embedding layer | ||
enc1_vocab_size(int): Optional. Vocabulary size of tokens | ||
enc0_layers(int): Optional. Number of layers in encoder | ||
enc1_layers(int): Optional. Number of layers in encoder | ||
enc0_freeze_pretrained_embedding(bool): Optional. Freeze pretrained embedding weights | ||
enc1_freeze_pretrained_embedding(bool): Optional. Freeze pretrained embedding weights | ||
|
||
**kwargs: base class keyword argument values. | ||
""" | ||
|
||
super(Object2Vec, self).__init__(role, train_instance_count, train_instance_type, **kwargs) | ||
|
||
self.enc_dim = enc_dim | ||
self.mini_batch_size = mini_batch_size | ||
self.epochs = epochs | ||
self.early_stopping_patience = early_stopping_patience | ||
self.early_stopping_tolerance = early_stopping_tolerance | ||
self.dropout = dropout | ||
self.weight_decay = weight_decay | ||
self.bucket_width = bucket_width | ||
self.num_classes = num_classes | ||
self.mlp_layers = mlp_layers | ||
self.mlp_dim = mlp_dim | ||
self.mlp_activation = mlp_activation | ||
self.output_layer = output_layer | ||
self.optimizer = optimizer | ||
self.learning_rate = learning_rate | ||
self.enc0_network = enc0_network | ||
self.enc1_network = enc1_network | ||
self.enc0_cnn_filter_width = enc0_cnn_filter_width | ||
self.enc1_cnn_filter_width = enc1_cnn_filter_width | ||
self.enc0_max_seq_len = enc0_max_seq_len | ||
self.enc1_max_seq_len = enc1_max_seq_len | ||
self.enc0_token_embedding_dim = enc0_token_embedding_dim | ||
self.enc1_token_embedding_dim = enc1_token_embedding_dim | ||
self.enc0_vocab_size = enc0_vocab_size | ||
self.enc1_vocab_size = enc1_vocab_size | ||
self.enc0_layers = enc0_layers | ||
self.enc1_layers = enc1_layers | ||
self.enc0_freeze_pretrained_embedding = enc0_freeze_pretrained_embedding | ||
self.enc1_freeze_pretrained_embedding = enc1_freeze_pretrained_embedding | ||
|
||
def create_model(self, vpc_config_override=VPC_CONFIG_DEFAULT): | ||
"""Return a :class:`~sagemaker.amazon.Object2VecModel` referencing the latest | ||
s3 model data produced by this Estimator. | ||
|
||
Args: | ||
vpc_config_override (dict[str, list[str]]): Optional override for VpcConfig set on the model. | ||
Default: use subnets and security groups from this Estimator. | ||
* 'Subnets' (list[str]): List of subnet ids. | ||
* 'SecurityGroupIds' (list[str]): List of security group ids. | ||
""" | ||
return Object2VecModel(self.model_data, self.role, sagemaker_session=self.sagemaker_session, | ||
vpc_config=self.get_vpc_config(vpc_config_override)) | ||
|
||
def _prepare_for_training(self, records, mini_batch_size=None, job_name=None): | ||
if mini_batch_size is None: | ||
mini_batch_size = self.MINI_BATCH_SIZE | ||
|
||
super(Object2Vec, self)._prepare_for_training(records, mini_batch_size=mini_batch_size, job_name=job_name) | ||
|
||
|
||
class Object2VecModel(Model): | ||
"""Reference Object2Vec s3 model data. Calling :meth:`~sagemaker.model.Model.deploy` creates an | ||
Endpoint and returns a Predictor that calculates anomaly scores for datapoints.""" | ||
|
||
def __init__(self, model_data, role, sagemaker_session=None, **kwargs): | ||
sagemaker_session = sagemaker_session or Session() | ||
repo = '{}:{}'.format(Object2Vec.repo_name, Object2Vec.repo_version) | ||
image = '{}/{}'.format(registry(sagemaker_session.boto_session.region_name, | ||
Object2Vec.repo_name), repo) | ||
super(Object2VecModel, self).__init__(model_data, image, role, | ||
predictor_cls=RealTimePredictor, | ||
sagemaker_session=sagemaker_session, | ||
**kwargs) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
can you bump the version on line 39 of this file?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
done