Skip to content

cann: Fix ggml_cann_im2col for 1D im2col #8819

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Aug 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
165 changes: 138 additions & 27 deletions ggml/src/ggml-cann/aclnn_ops.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1312,6 +1312,111 @@ aclnnStatus aclnnIm2col(void* workspace, uint64_t workspaceSize,
#ifdef __cplusplus
}
#endif

static void ggml_cann_im2col_2d_post_process(ggml_backend_cann_context& ctx,
ggml_tensor* dst,
ggml_tensor* src1,
aclTensor* tmp_cast_tensor,
aclTensor* tmp_im2col_tensor) {
// Permute: [N, IC * KH * KW, OW * OH] -> [N, OW * OH, IC * KH * KW]
int64_t dst_ne[] = {dst->ne[0], dst->ne[1] * dst->ne[2], dst->ne[3]};
size_t dst_nb[] = {dst->nb[0], dst->nb[1], dst->nb[3]};
aclTensor* acl_dst =
ggml_cann_create_tensor(dst, dst_ne, dst_nb, GGML_MAX_DIMS - 1);

int64_t permute_dim[] = {0, 2, 1};
if (src1->type != dst->type) {
aclnn_permute(ctx, tmp_cast_tensor, acl_dst, permute_dim, 3);
} else {
aclnn_permute(ctx, tmp_im2col_tensor, acl_dst, permute_dim, 3);
}

// release
ACL_CHECK(aclDestroyTensor(acl_dst));
}

static void ggml_cann_im2col_1d_post_process(
ggml_backend_cann_context& ctx, ggml_tensor* dst, ggml_tensor* src1,
aclTensor* tmp_cast_tensor, aclTensor* tmp_im2col_tensor,
const std::vector<int64_t>& im2col_op_params) {
// get params
const int64_t KH = im2col_op_params[0];
const int64_t KW = im2col_op_params[1];
const int64_t IW = im2col_op_params[2];
const int64_t IC = im2col_op_params[3];
const int64_t N = im2col_op_params[4];
const int64_t OH = im2col_op_params[5];
const int64_t OW = im2col_op_params[6];
const int64_t s0 = im2col_op_params[7];
const int64_t p0 = im2col_op_params[8];
const int64_t d0 = im2col_op_params[9];
const int64_t n_bytes_factor = im2col_op_params[10];

// Permute: [N, IC * KH * KW, OW * OH] ->
// [N, OW * OH * n_bytes_factor, IC * KH * KW]
aclTensor* tmp_permute_tensor = nullptr;
ggml_cann_pool_alloc tmp_permute_allocator(ctx.pool());
tmp_permute_allocator.alloc(ggml_nbytes(dst) * n_bytes_factor);
void* tmp_permute_buffer = tmp_permute_allocator.get();

int64_t tmp_permute_ne[] = {IC * KH * KW, OW * OH * n_bytes_factor, N};
size_t tmp_permute_nb[GGML_MAX_DIMS - 1];
tmp_permute_nb[0] = ggml_type_size(dst->type);
for (int i = 1; i < GGML_MAX_DIMS - 1; i++) {
tmp_permute_nb[i] = tmp_permute_nb[i - 1] * tmp_permute_ne[i - 1];
}

tmp_permute_tensor = ggml_cann_create_tensor(
tmp_permute_buffer, ggml_cann_type_mapping(dst->type),
ggml_type_size(dst->type), tmp_permute_ne, tmp_permute_nb,
GGML_MAX_DIMS - 1, ACL_FORMAT_ND);

int64_t permute_dim[] = {0, 2, 1};
if (src1->type != dst->type) {
aclnn_permute(ctx, tmp_cast_tensor, tmp_permute_tensor, permute_dim, 3);
} else {
aclnn_permute(ctx, tmp_im2col_tensor, tmp_permute_tensor, permute_dim,
3);
}

// number of times the kernel moves in W dimension
const int n_step_w = (IW + 2 * p0 - d0 * (KW - 1) - 1) / s0 + 1;
size_t offset;
void *cur_dst_buffer = dst->data, *cur_permute_buffer = tmp_permute_buffer;

// memory copy with offset to restore 1D im2col from 2d
if (IC > 1) {
offset = IC * KH * KW * n_step_w * ggml_type_size(dst->type);
size_t size_cpy = KH * KW * ggml_type_size(dst->type);

for (int c = 0; c < IC; c++) {
cur_permute_buffer = (char*)tmp_permute_buffer + offset +
KH * KW * c * ggml_type_size(dst->type);
cur_dst_buffer = (char*)dst->data +
c * KH * KW * n_step_w * ggml_type_size(dst->type);

for (int i = 0; i < n_step_w; i++) {
ACL_CHECK(aclrtMemcpyAsync(
cur_dst_buffer, size_cpy, cur_permute_buffer, size_cpy,
ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
cur_dst_buffer =
(char*)cur_dst_buffer + KH * KW * ggml_type_size(dst->type);
cur_permute_buffer = (char*)cur_permute_buffer +
KH * KW * IC * ggml_type_size(dst->type);
}
}
} else {
offset = KH * KW * n_step_w *
ggml_type_size(dst->type); // equal to ggml_nbytes(dst)
ACL_CHECK(aclrtMemcpyAsync(dst->data, offset,
(char*)tmp_permute_buffer + offset, offset,
ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
}

// release
ACL_CHECK(aclDestroyTensor(tmp_permute_tensor));
}

void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0]; // kernel
ggml_tensor* src1 = dst->src[1]; // input
Expand All @@ -1320,31 +1425,36 @@ void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);

GGML_TENSOR_BINARY_OP_LOCALS;

// aclnnIm2col only works on 2D. set s1, p1, d1 to 1 to perform 2D
// im2col and do post-processing to restore it to 1D.
const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
const int32_t s1 = is_2D ? ((const int32_t*)(dst->op_params))[1] : 1;
const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
const int32_t p1 = is_2D ? ((const int32_t*)(dst->op_params))[3] : 1;
const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;

GGML_TENSOR_BINARY_OP_LOCALS;

const int64_t N = is_2D ? ne13 : ne12;
const int64_t IC = is_2D ? ne12 : ne11;
const int32_t d1 = is_2D ? ((const int32_t*)(dst->op_params))[5] : 1;

const int64_t KH = is_2D ? ne01 : 1;
const int64_t N = ne13;
const int64_t IC = ne12;
const int64_t KH = ne01;
const int64_t KW = ne00;
const int64_t IW = ne10;

const int64_t OH = is_2D ? ne2 : 1;
const int64_t OW = ne1;

GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));

// im2col: [N,C,H,W] -> [N, IC * KH * KW, OW * OH]
// memory allocated increased to 3x when is_2D == false
const int64_t n_bytes_factor = is_2D ? 1 : 3;

// im2col: [N,C,H,W] -> [N, IC * KH * KW, OW * OH * n_bytes_factor]
aclTensor* acl_src1 = ggml_cann_create_tensor(src1);
int64_t tmp_im2col_ne[] = {OW * OH, IC * KH * KW, N};
int64_t tmp_im2col_ne[] = {OW * OH * n_bytes_factor, IC * KH * KW, N};
size_t tmp_im2col_nb[GGML_MAX_DIMS - 1];

tmp_im2col_nb[0] = ggml_type_size(src1->type);
Expand All @@ -1356,8 +1466,10 @@ void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
// If dst is f16, tmp_buffer is f32, we need alloc src.typesize *
// dst.elemcount.
ggml_cann_pool_alloc im2col_allocator(
ctx.pool(), ggml_nelements(dst) * ggml_element_size(src1));
ctx.pool(),
ggml_nelements(dst) * ggml_element_size(src1) * n_bytes_factor);
void* tmp_im2col_buffer = im2col_allocator.get();

aclTensor* tmp_im2col_tensor = ggml_cann_create_tensor(
tmp_im2col_buffer, ggml_cann_type_mapping(src1->type),
ggml_type_size(src1->type), tmp_im2col_ne, tmp_im2col_nb,
Expand All @@ -1380,8 +1492,9 @@ void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
paddings, strides, tmp_im2col_tensor,
&workspaceSize, &executor));

ggml_cann_pool_alloc workspace_allocator(ctx.pool());
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspace_allocator.alloc(workspaceSize);
workspaceAddr = workspace_allocator.get();
}

Expand All @@ -1391,9 +1504,10 @@ void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
// Cast if dst is f16.
aclTensor* tmp_cast_tensor = nullptr;
ggml_cann_pool_alloc tmp_cast_allocator(ctx.pool());
void* tmp_cast_buffer = nullptr;
if (src1->type != dst->type) {
tmp_cast_allocator.alloc(ggml_nbytes(dst));
void* tmp_cast_buffer = tmp_cast_allocator.get();
tmp_cast_allocator.alloc(ggml_nbytes(dst) * n_bytes_factor);
tmp_cast_buffer = tmp_cast_allocator.get();
size_t temp_cast_nb[GGML_MAX_DIMS - 1];
temp_cast_nb[0] = ggml_type_size(dst->type);
for (int i = 1; i < GGML_MAX_DIMS - 1; i++) {
Expand All @@ -1408,24 +1522,21 @@ void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_cann_type_mapping(dst->type));
}

// Permute: [N, IC * KH * KW, OW * OH] -> [N, OW * OH, IC * KH * KW]
int64_t dst_ne[] = {dst->ne[0], dst->ne[1] * dst->ne[2], dst->ne[3]};
size_t dst_nb[] = {dst->nb[0], dst->nb[1], dst->nb[3]};
aclTensor* acl_dst =
ggml_cann_create_tensor(dst, dst_ne, dst_nb, GGML_MAX_DIMS - 1);

int64_t permute_dim[] = {0, 2, 1};
if (src1->type != dst->type) {
aclnn_permute(ctx, tmp_cast_tensor, acl_dst, permute_dim, 3);
// post-processing
if (is_2D) {
ggml_cann_im2col_2d_post_process(ctx, dst, src1, tmp_cast_tensor,
tmp_im2col_tensor);
} else {
aclnn_permute(ctx, tmp_im2col_tensor, acl_dst, permute_dim, 3);
std::vector<int64_t> im2col_op_params = {
KH, KW, IW, IC, N, OH, OW, s0, p0, d0, n_bytes_factor};
ggml_cann_im2col_1d_post_process(ctx, dst, src1, tmp_cast_tensor,
tmp_im2col_tensor, im2col_op_params);
}

// release
ACL_CHECK(aclDestroyTensor(acl_src1));
ACL_CHECK(aclDestroyTensor(tmp_im2col_tensor));
ACL_CHECK(aclDestroyTensor(tmp_cast_tensor));
ACL_CHECK(aclDestroyTensor(acl_dst));
ACL_CHECK(aclDestroyIntArray(kernel_size));
ACL_CHECK(aclDestroyIntArray(dilations));
ACL_CHECK(aclDestroyIntArray(paddings));
Expand Down
3 changes: 3 additions & 0 deletions tests/test-backend-ops.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2139,6 +2139,9 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op

test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
// test cases for 1D im2col
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));

test_cases.emplace_back(new test_conv_transpose_1d());
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
Expand Down
Loading