Skip to content

[SYCL][ESIMD] Add histogram 256 bin test using SLM #2392

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Sep 4, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
191 changes: 191 additions & 0 deletions sycl/test/esimd/on-device/histogram_256_slm.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,191 @@
//==--------------- histogram_256_slm.cpp - DPC++ ESIMD on-device test ----==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// TODO enable on Windows
// REQUIRES: linux
// REQUIRES: gpu
// RUN: %clangxx-esimd -fsycl %s -o %t.out
// RUN: %ESIMD_RUN_PLACEHOLDER %t.out

#include "esimd_test_utils.hpp"

#include <CL/sycl.hpp>
#include <CL/sycl/INTEL/esimd.hpp>
#include <iostream>

static constexpr int NUM_BINS = 256;
static constexpr int SLM_SIZE = (NUM_BINS * 4);
static constexpr int BLOCK_WIDTH = 32;
static constexpr int NUM_BLOCKS = 32;

using namespace cl::sycl;
using namespace sycl::INTEL::gpu;

// Histogram kernel: computes the distribution of pixel intensities
ESIMD_INLINE void histogram_atomic(const uint32_t *input_ptr, uint32_t *output,
uint32_t gid, uint32_t lid,
uint32_t local_size) {
// Declare and initialize SLM
slm_init(SLM_SIZE);
uint linear_id = gid * local_size + lid;

simd<uint, 16> slm_offset(0, 1);
slm_offset += 16 * lid;
slm_offset *= sizeof(int);
simd<uint, 16> slm_data = 0;
slm_store<uint, 16>(slm_data, slm_offset);
slm_fence(ESIMD_GLOBAL_COHERENT_FENCE);
esimd_barrier();

// Each thread handles NUM_BLOCKSxBLOCK_WIDTH pixel blocks
auto start_off = (linear_id * BLOCK_WIDTH * NUM_BLOCKS);
for (int y = 0; y < NUM_BLOCKS; y++) {
auto start_addr = ((unsigned int *)input_ptr) + start_off;
auto data = block_load<uint, 32>(start_addr);
auto in = data.format<uchar>();

#pragma unroll
for (int j = 0; j < BLOCK_WIDTH * sizeof(int); j += 16) {
// Accumulate local histogram for each pixel value
auto dataOffset = convert<uint, uchar, 16>(in.select<16, 1>(j).read());
dataOffset *= sizeof(int);
slm_atomic<EsimdAtomicOpType::ATOMIC_INC, uint, 16>(dataOffset, 1);
}
start_off += BLOCK_WIDTH;
}
slm_fence(ESIMD_GLOBAL_COHERENT_FENCE);
esimd_barrier();

// Update global sum by atomically adding each local histogram
simd<uint, 16> local_histogram;
local_histogram = slm_load<uint32_t, 16>(slm_offset);
flat_atomic<EsimdAtomicOpType::ATOMIC_ADD, uint32_t, 8>(
output, slm_offset.select<8, 1>(0), local_histogram.select<8, 1>(0), 1);
flat_atomic<EsimdAtomicOpType::ATOMIC_ADD, uint32_t, 8>(
output, slm_offset.select<8, 1>(8), local_histogram.select<8, 1>(8), 1);
}

// This function calculates histogram of the image with the CPU.
// @param size: the size of the input array.
// @param src: pointer to the input array.
// @param cpu_histogram: pointer to the histogram of the input image.
void HistogramCPU(unsigned int size, unsigned int *src,
unsigned int *cpu_histogram) {
for (int i = 0; i < size; i++) {
unsigned int x = src[i];
cpu_histogram[(x)&0xFFU] += 1;
cpu_histogram[(x >> 8) & 0xFFU] += 1;
cpu_histogram[(x >> 16) & 0xFFU] += 1;
cpu_histogram[(x >> 24) & 0xFFU] += 1;
}
}

// This function compares the output data calculated by the CPU and the
// GPU separately.
// If they are identical, return 1, else return 0.
int CheckHistogram(unsigned int *cpu_histogram, unsigned int *gpu_histogram) {
unsigned int bad = 0;
for (int i = 0; i < NUM_BINS; i++) {
if (cpu_histogram[i] != gpu_histogram[i]) {
std::cout << "At " << i << ": CPU = " << cpu_histogram[i]
<< ", GPU = " << gpu_histogram[i] << std::endl;
if (bad >= 256)
return 0;
bad++;
}
}
if (bad > 0)
return 0;

return 1;
}

int main() {
queue q(esimd_test::ESIMDSelector{}, esimd_test::createExceptionHandler());
auto dev = q.get_device();
auto ctxt = q.get_context();

const char *input_file = nullptr;
unsigned int width = 1024 * sizeof(unsigned int);
unsigned int height = 1024;

// Initializes input.
unsigned int input_size = width * height;
unsigned int *input_ptr =
(unsigned int *)malloc_shared(input_size, dev, ctxt);
printf("Processing %dx%d inputs\n", (int)(width / sizeof(unsigned int)),
height);

srand(2009);
input_size = input_size / sizeof(int);
for (int i = 0; i < input_size; ++i) {
input_ptr[i] = rand() % 256;
input_ptr[i] |= (rand() % 256) << 8;
input_ptr[i] |= (rand() % 256) << 16;
input_ptr[i] |= (rand() % 256) << 24;
}

// Allocates system memory for output buffer.
int buffer_size = sizeof(unsigned int) * NUM_BINS;
unsigned int *hist = new unsigned int[buffer_size];
if (hist == nullptr) {
std::cerr << "Out of memory\n";
exit(1);
}
memset(hist, 0, buffer_size);

// Uses the CPU to calculate the histogram output data.
unsigned int cpu_histogram[NUM_BINS];
memset(cpu_histogram, 0, sizeof(cpu_histogram));

HistogramCPU(input_size, input_ptr, cpu_histogram);

std::cout << "finish cpu_histogram\n";

// Uses the GPU to calculate the histogram output data.
unsigned int *output_surface =
(uint32_t *)malloc_shared(4 * NUM_BINS, dev, ctxt);
memset(output_surface, 0, 4 * NUM_BINS);

unsigned int num_threads;
num_threads = width * height / (NUM_BLOCKS * BLOCK_WIDTH * sizeof(int));

auto GlobalRange = cl::sycl::range<1>(num_threads);
auto LocalRange = cl::sycl::range<1>(NUM_BINS / 16);
cl::sycl::nd_range<1> Range(GlobalRange, LocalRange);

{
auto e = q.submit([&](cl::sycl::handler &cgh) {
cgh.parallel_for<class histogram_slm>(
Range, [=](cl::sycl::nd_item<1> ndi) SYCL_ESIMD_KERNEL {
histogram_atomic(input_ptr, output_surface, ndi.get_group(0),
ndi.get_local_id(0), 16);
});
});
e.wait();
}

std::cout << "finish GPU histogram\n";

memcpy(hist, output_surface, 4 * NUM_BINS);

free(output_surface, ctxt);

free(input_ptr, ctxt);

// Compares the CPU histogram output data with the
// GPU histogram output data.
// If there is no difference, the result is correct.
// Otherwise there is something wrong.
int res = CheckHistogram(cpu_histogram, hist);
if (res)
std::cout << "PASSED\n";
else
std::cout << "FAILED\n";

return res ? 0 : -1;
}