-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[mlir][tensor] Add canonicalization to fold consecutive tensor.pad ops #107302
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
`tensor.pad(tensor.pad)` with the same constant padding value can be combined into a single pad that pads to the sum of the high and low padding amounts.
@llvm/pr-subscribers-mlir-tensor @llvm/pr-subscribers-mlir Author: Quinn Dawkins (qedawkins) Changes
Full diff: https://github.com/llvm/llvm-project/pull/107302.diff 2 Files Affected:
diff --git a/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp b/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
index 996de530c255d4..48f9aa0d0664a1 100644
--- a/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
+++ b/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
@@ -3397,12 +3397,95 @@ struct FoldStaticPadding : public OpRewritePattern<PadOp> {
}
};
+/// Folds a chain of `tensor.pad` ops with the same constant padding value.
+///
+/// Example:
+///
+/// ```mlir
+/// %1 = tensor.pad %0 low[0, 1] high[0, 2] {
+/// tensor.yield %val
+/// } : tensor<1x2xf32> to tensor<2x5xf32>
+/// %res = tensor.pad %1 low[0, 2] high[3, 0] {
+/// tensor.yield %val
+/// } : tensor<1x5xf32> to tensor<5x7xf32>
+/// ```
+///
+/// folds into:
+///
+/// ```mlir
+/// %res = tensor.pad %0 low[0, 3] high[3, 2] {
+/// tensor.yield %val
+/// } : tensor<1x2xf32> to tensor<5x7xf32>
+/// ```
+struct FoldConsecutiveConstantPadding : public OpRewritePattern<tensor::PadOp> {
+ using OpRewritePattern<tensor::PadOp>::OpRewritePattern;
+
+ LogicalResult matchAndRewrite(tensor::PadOp padOp,
+ PatternRewriter &rewriter) const override {
+ auto producerPad = padOp.getSource().getDefiningOp<tensor::PadOp>();
+ if (!producerPad || producerPad.getNofold()) {
+ return rewriter.notifyMatchFailure(
+ padOp, "producer is not a foldable tensor.pad op");
+ }
+
+ // Fail if the tensor::PadOps padding values do not match.
+ Value consumerPadValue = padOp.getConstantPaddingValue();
+ Value producerPadValue = producerPad.getConstantPaddingValue();
+ if (!consumerPadValue || !producerPadValue ||
+ consumerPadValue != producerPadValue) {
+ return rewriter.notifyMatchFailure(
+ padOp,
+ "cannot fold PadOps with different or non-constant padding values");
+ }
+
+ Location loc = padOp.getLoc();
+
+ // Combine the low/high paddings of the two tensor::PadOps.
+ auto addPaddings = [&](ArrayRef<OpFoldResult> consumerPaddings,
+ ArrayRef<OpFoldResult> producerPaddings) {
+ SmallVector<OpFoldResult> sumPaddings;
+ for (auto [consumerIndex, producerIndex] :
+ llvm::zip_equal(consumerPaddings, producerPaddings)) {
+ Value consumerIndexVal =
+ getValueOrCreateConstantIndexOp(rewriter, loc, consumerIndex);
+ Value producerIndexVal =
+ getValueOrCreateConstantIndexOp(rewriter, loc, producerIndex);
+ Value sum = rewriter.createOrFold<arith::AddIOp>(loc, consumerIndexVal,
+ producerIndexVal);
+ APInt constantSum;
+ if (matchPattern(sum, m_ConstantInt(&constantSum))) {
+ sumPaddings.push_back(
+ rewriter.getIndexAttr(constantSum.getSExtValue()));
+ } else {
+ sumPaddings.push_back(sum);
+ }
+ }
+ return sumPaddings;
+ };
+
+ SmallVector<OpFoldResult> newHighPad =
+ addPaddings(padOp.getMixedHighPad(), producerPad.getMixedHighPad());
+ SmallVector<OpFoldResult> newLowPad =
+ addPaddings(padOp.getMixedLowPad(), producerPad.getMixedLowPad());
+
+ auto newPadOp = rewriter.create<tensor::PadOp>(
+ padOp.getLoc(), padOp.getResultType(), producerPad.getSource(),
+ newLowPad, newHighPad, padOp.getNofold(),
+ getPrunedAttributeList(padOp, tensor::PadOp::getAttributeNames()));
+ rewriter.inlineRegionBefore(padOp.getRegion(), newPadOp.getRegion(),
+ newPadOp.getRegion().begin());
+ rewriter.replaceOp(padOp, newPadOp.getResult());
+ return success();
+ }
+};
+
} // namespace
void PadOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<FoldStaticZeroPadding, FoldSourceTensorCast, FoldTargetTensorCast,
- FoldOrthogonalPaddings, FoldStaticPadding>(context);
+ FoldOrthogonalPaddings, FoldStaticPadding,
+ FoldConsecutiveConstantPadding>(context);
}
/// Return the padding value of the PadOp if it constant. In this context,
diff --git a/mlir/test/Dialect/Tensor/canonicalize.mlir b/mlir/test/Dialect/Tensor/canonicalize.mlir
index 735790e5bd6c5e..fb9e6c96b09ef6 100644
--- a/mlir/test/Dialect/Tensor/canonicalize.mlir
+++ b/mlir/test/Dialect/Tensor/canonicalize.mlir
@@ -1964,6 +1964,88 @@ func.func @dont_fold_pad_chains(%arg0: tensor<64x64xf32>,
// -----
+// CHECK-LABEL: func @merge_constant_padding
+// CHECK-SAME: %[[ARG0:[A-Za-z0-9]+]]: tensor<2x3xf32>
+// CHECK-SAME: %[[PADVAL:[A-Za-z0-9]+]]: f32
+// CHECK: %[[PAD:.+]] = tensor.pad %[[ARG0]] low[1, 3] high[4, 2]
+// CHECK: tensor.yield %[[PADVAL]]
+// CHECK: return %[[PAD]]
+func.func @merge_constant_padding(%arg0: tensor<2x3xf32>, %pad_value: f32) -> tensor<7x8xf32> {
+ %pad0 = tensor.pad %arg0 low[1, 1] high[1, 0] {
+ ^bb0(%b0: index, %b1 : index):
+ tensor.yield %pad_value : f32
+ } : tensor<2x3xf32> to tensor<4x4xf32>
+ %pad1 = tensor.pad %pad0 low[0, 2] high[3, 2] {
+ ^bb0(%b2: index, %b3 : index):
+ tensor.yield %pad_value : f32
+ } : tensor<4x4xf32> to tensor<7x8xf32>
+ return %pad1 : tensor<7x8xf32>
+}
+
+// -----
+
+// CHECK-LABEL: func @merge_constant_padding_dynamic
+// CHECK-SAME: %[[ARG0:[A-Za-z0-9]+]]: tensor<?x?xf32>
+// CHECK-SAME: %[[IDX:[A-Za-z0-9]+]]: index
+// CHECK-SAME: %[[PADVAL:[A-Za-z0-9]+]]: f32
+// CHECK: %[[C1:.+]] = arith.constant 1 : index
+// CHECK: %[[HIGH:.+]] = arith.addi %[[IDX]], %[[C1]] : index
+// CHECK: %[[PAD:.+]] = tensor.pad %[[ARG0]] low[%[[IDX]], 3] high[%[[HIGH]], 2]
+// CHECK: tensor.yield %[[PADVAL]]
+// CHECK: return %[[PAD]]
+func.func @merge_constant_padding_dynamic(%arg0: tensor<?x?xf32>, %idx: index, %pad_value: f32) -> tensor<?x?xf32> {
+ %pad0 = tensor.pad %arg0 low[%idx, 1] high[1, 0] {
+ ^bb0(%b0: index, %b1 : index):
+ tensor.yield %pad_value : f32
+ } : tensor<?x?xf32> to tensor<?x?xf32>
+ %pad1 = tensor.pad %pad0 low[0, 2] high[%idx, 2] {
+ ^bb0(%b2: index, %b3 : index):
+ tensor.yield %pad_value : f32
+ } : tensor<?x?xf32> to tensor<?x?xf32>
+ return %pad1 : tensor<?x?xf32>
+}
+
+// -----
+
+// Verify that folding does not happen if it would drop a nofold attribute
+// CHECK-LABEL: func @dont_merge_constant_padding_nofold
+// CHECK: tensor.pad {{.*}} nofold
+// CHECK: tensor.pad
+func.func @dont_merge_constant_padding_nofold(%arg0: tensor<2x3xf32>, %pad_value: f32) -> tensor<7x8xf32> {
+ %pad0 = tensor.pad %arg0 nofold low[1, 1] high[1, 0] {
+ ^bb0(%b0: index, %b1 : index):
+ tensor.yield %pad_value : f32
+ } : tensor<2x3xf32> to tensor<4x4xf32>
+ %pad1 = tensor.pad %pad0 low[0, 2] high[3, 2] {
+ ^bb0(%b2: index, %b3 : index):
+ tensor.yield %pad_value : f32
+ } : tensor<4x4xf32> to tensor<7x8xf32>
+ return %pad1 : tensor<7x8xf32>
+}
+
+// -----
+
+// Verify that folding does not happen if it would drop a nofold attribute
+// CHECK-LABEL: func @dont_merge_constant_padding_different_vals
+// CHECK: tensor.pad
+// CHECK: tensor.pad
+func.func @dont_merge_constant_padding_different_vals(
+ %arg0: tensor<2x3xf32>,
+ %pad_value0: f32,
+ %pad_value1: f32) -> tensor<7x8xf32> {
+ %pad0 = tensor.pad %arg0 low[1, 1] high[1, 0] {
+ ^bb0(%b0: index, %b1 : index):
+ tensor.yield %pad_value0 : f32
+ } : tensor<2x3xf32> to tensor<4x4xf32>
+ %pad1 = tensor.pad %pad0 low[0, 2] high[3, 2] {
+ ^bb0(%b2: index, %b3 : index):
+ tensor.yield %pad_value1 : f32
+ } : tensor<4x4xf32> to tensor<7x8xf32>
+ return %pad1 : tensor<7x8xf32>
+}
+
+// -----
+
// CHECK-LABEL: func @fold_collapse_shape_from_elements
func.func @fold_collapse_shape_from_elements(%arg0: i32) -> tensor<i32> {
// CHECK: %[[FROM:.+]] = tensor.from_elements %arg0 : tensor<i32>
|
Max191
approved these changes
Sep 5, 2024
This was referenced Sep 9, 2024
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
tensor.pad(tensor.pad)
with the same constant padding value can be combined into a single pad that pads to the sum of the high and low padding amounts.