Skip to content

[mlir][tensor] Add canonicalization to fold consecutive tensor.pad ops #107302

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Sep 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
80 changes: 79 additions & 1 deletion mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -3397,12 +3397,90 @@ struct FoldStaticPadding : public OpRewritePattern<PadOp> {
}
};

/// Folds a chain of `tensor.pad` ops with the same constant padding value.
///
/// Example:
///
/// ```mlir
/// %1 = tensor.pad %0 low[0, 1] high[0, 2] {
/// tensor.yield %val
/// } : tensor<1x2xf32> to tensor<2x5xf32>
/// %res = tensor.pad %1 low[0, 2] high[3, 0] {
/// tensor.yield %val
/// } : tensor<1x5xf32> to tensor<5x7xf32>
/// ```
///
/// folds into:
///
/// ```mlir
/// %res = tensor.pad %0 low[0, 3] high[3, 2] {
/// tensor.yield %val
/// } : tensor<1x2xf32> to tensor<5x7xf32>
/// ```
struct FoldConsecutiveConstantPadding : public OpRewritePattern<tensor::PadOp> {
using OpRewritePattern<tensor::PadOp>::OpRewritePattern;

LogicalResult matchAndRewrite(tensor::PadOp padOp,
PatternRewriter &rewriter) const override {
if (padOp.getNofold()) {
return rewriter.notifyMatchFailure(padOp, "skipping unfoldable pad");
}

auto producerPad = padOp.getSource().getDefiningOp<tensor::PadOp>();
if (!producerPad || producerPad.getNofold()) {
return rewriter.notifyMatchFailure(
padOp, "producer is not a foldable tensor.pad op");
}

// Fail if the tensor::PadOps padding values do not match.
Value consumerPadValue = padOp.getConstantPaddingValue();
Value producerPadValue = producerPad.getConstantPaddingValue();
if (!consumerPadValue || !producerPadValue ||
consumerPadValue != producerPadValue) {
return rewriter.notifyMatchFailure(
padOp,
"cannot fold PadOps with different or non-constant padding values");
}

Location loc = padOp.getLoc();
AffineExpr d0, d1;
bindDims(rewriter.getContext(), d0, d1);

// Combine the low/high paddings of the two tensor::PadOps.
auto addPaddings = [&](ArrayRef<OpFoldResult> consumerPaddings,
ArrayRef<OpFoldResult> producerPaddings) {
SmallVector<OpFoldResult> sumPaddings;
for (auto [consumerIndex, producerIndex] :
llvm::zip_equal(consumerPaddings, producerPaddings)) {
sumPaddings.push_back(affine::makeComposedFoldedAffineApply(
rewriter, loc, d0 + d1, {consumerIndex, producerIndex}));
}
return sumPaddings;
};

SmallVector<OpFoldResult> newHighPad =
addPaddings(padOp.getMixedHighPad(), producerPad.getMixedHighPad());
SmallVector<OpFoldResult> newLowPad =
addPaddings(padOp.getMixedLowPad(), producerPad.getMixedLowPad());

auto newPadOp = rewriter.create<tensor::PadOp>(
padOp.getLoc(), padOp.getResultType(), producerPad.getSource(),
newLowPad, newHighPad, padOp.getNofold(),
getPrunedAttributeList(padOp, tensor::PadOp::getAttributeNames()));
rewriter.inlineRegionBefore(padOp.getRegion(), newPadOp.getRegion(),
newPadOp.getRegion().begin());
rewriter.replaceOp(padOp, newPadOp.getResult());
return success();
}
};

} // namespace

void PadOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<FoldStaticZeroPadding, FoldSourceTensorCast, FoldTargetTensorCast,
FoldOrthogonalPaddings, FoldStaticPadding>(context);
FoldOrthogonalPaddings, FoldStaticPadding,
FoldConsecutiveConstantPadding>(context);
}

/// Return the padding value of the PadOp if it constant. In this context,
Expand Down
82 changes: 82 additions & 0 deletions mlir/test/Dialect/Tensor/canonicalize.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -1964,6 +1964,88 @@ func.func @dont_fold_pad_chains(%arg0: tensor<64x64xf32>,

// -----

// CHECK-LABEL: func @merge_constant_padding
// CHECK-SAME: %[[ARG0:[A-Za-z0-9]+]]: tensor<2x3xf32>
// CHECK-SAME: %[[PADVAL:[A-Za-z0-9]+]]: f32
// CHECK: %[[PAD:.+]] = tensor.pad %[[ARG0]] low[1, 3] high[4, 2]
// CHECK: tensor.yield %[[PADVAL]]
// CHECK: return %[[PAD]]
func.func @merge_constant_padding(%arg0: tensor<2x3xf32>, %pad_value: f32) -> tensor<7x8xf32> {
%pad0 = tensor.pad %arg0 low[1, 1] high[1, 0] {
^bb0(%b0: index, %b1 : index):
tensor.yield %pad_value : f32
} : tensor<2x3xf32> to tensor<4x4xf32>
%pad1 = tensor.pad %pad0 low[0, 2] high[3, 2] {
^bb0(%b2: index, %b3 : index):
tensor.yield %pad_value : f32
} : tensor<4x4xf32> to tensor<7x8xf32>
return %pad1 : tensor<7x8xf32>
}

// -----

// CHECK: #[[$MAP:.*]] = affine_map<()[s0] -> (s0 + 1)>
// CHECK-LABEL: func @merge_constant_padding_dynamic
// CHECK-SAME: %[[ARG0:[A-Za-z0-9]+]]: tensor<?x?xf32>
// CHECK-SAME: %[[IDX:[A-Za-z0-9]+]]: index
// CHECK-SAME: %[[PADVAL:[A-Za-z0-9]+]]: f32
// CHECK: %[[HIGH:.+]] = affine.apply #[[$MAP]]()[%[[IDX]]]
// CHECK: %[[PAD:.+]] = tensor.pad %[[ARG0]] low[%[[IDX]], 3] high[%[[HIGH]], 2]
// CHECK: tensor.yield %[[PADVAL]]
// CHECK: return %[[PAD]]
func.func @merge_constant_padding_dynamic(%arg0: tensor<?x?xf32>, %idx: index, %pad_value: f32) -> tensor<?x?xf32> {
%pad0 = tensor.pad %arg0 low[%idx, 1] high[1, 0] {
^bb0(%b0: index, %b1 : index):
tensor.yield %pad_value : f32
} : tensor<?x?xf32> to tensor<?x?xf32>
%pad1 = tensor.pad %pad0 low[0, 2] high[%idx, 2] {
^bb0(%b2: index, %b3 : index):
tensor.yield %pad_value : f32
} : tensor<?x?xf32> to tensor<?x?xf32>
return %pad1 : tensor<?x?xf32>
}

// -----

// Verify that folding does not happen if it would drop a nofold attribute
// CHECK-LABEL: func @dont_merge_constant_padding_nofold
// CHECK: tensor.pad {{.*}} nofold
// CHECK: tensor.pad
func.func @dont_merge_constant_padding_nofold(%arg0: tensor<2x3xf32>, %pad_value: f32) -> tensor<7x8xf32> {
%pad0 = tensor.pad %arg0 nofold low[1, 1] high[1, 0] {
^bb0(%b0: index, %b1 : index):
tensor.yield %pad_value : f32
} : tensor<2x3xf32> to tensor<4x4xf32>
%pad1 = tensor.pad %pad0 low[0, 2] high[3, 2] {
^bb0(%b2: index, %b3 : index):
tensor.yield %pad_value : f32
} : tensor<4x4xf32> to tensor<7x8xf32>
return %pad1 : tensor<7x8xf32>
}

// -----

// Verify that folding does not happen if it would drop a nofold attribute
// CHECK-LABEL: func @dont_merge_constant_padding_different_vals
// CHECK: tensor.pad
// CHECK: tensor.pad
func.func @dont_merge_constant_padding_different_vals(
%arg0: tensor<2x3xf32>,
%pad_value0: f32,
%pad_value1: f32) -> tensor<7x8xf32> {
%pad0 = tensor.pad %arg0 low[1, 1] high[1, 0] {
^bb0(%b0: index, %b1 : index):
tensor.yield %pad_value0 : f32
} : tensor<2x3xf32> to tensor<4x4xf32>
%pad1 = tensor.pad %pad0 low[0, 2] high[3, 2] {
^bb0(%b2: index, %b3 : index):
tensor.yield %pad_value1 : f32
} : tensor<4x4xf32> to tensor<7x8xf32>
return %pad1 : tensor<7x8xf32>
}

// -----

// CHECK-LABEL: func @fold_collapse_shape_from_elements
func.func @fold_collapse_shape_from_elements(%arg0: i32) -> tensor<i32> {
// CHECK: %[[FROM:.+]] = tensor.from_elements %arg0 : tensor<i32>
Expand Down
Loading