-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[mlir][linalg][nfc] Update pack-dynamic-inner-tile.mlir #116788
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
Following on from llvm#116373, updates "pack-dynamic-inner-tile.mlir" to use TD Ops for all transformations except for lowering to LLVM. This is an intermediate step before introducing vectorization.
@llvm/pr-subscribers-mlir-linalg Author: Andrzej Warzyński (banach-space) ChangesFollowing on from #116373, updates "pack-dynamic-inner-tile.mlir" to use This is an intermediate step before introducing vectorization. Full diff: https://github.com/llvm/llvm-project/pull/116788.diff 1 Files Affected:
diff --git a/mlir/test/Integration/Dialect/Linalg/CPU/pack-dynamic-inner-tile.mlir b/mlir/test/Integration/Dialect/Linalg/CPU/pack-dynamic-inner-tile.mlir
index 0428ada86041da..e214847d17c61c 100644
--- a/mlir/test/Integration/Dialect/Linalg/CPU/pack-dynamic-inner-tile.mlir
+++ b/mlir/test/Integration/Dialect/Linalg/CPU/pack-dynamic-inner-tile.mlir
@@ -2,9 +2,7 @@
// DEFINE: -transform-interpreter -test-transform-dialect-erase-schedule |\
// DEFINE: mlir-opt --test-linalg-transform-patterns="test-decompose-tensor-pack"\
// DEFINE: --test-transform-dialect-erase-schedule \
-// DEFINE: -one-shot-bufferize="bufferize-function-boundaries" \
-// DEFINE: -buffer-deallocation-pipeline="private-function-dynamic-ownership" \
-// DEFINE: -cse -canonicalize -test-lower-to-llvm -o %t
+// DEFINE: -test-lower-to-llvm -o %t
// DEFINE: %{entry_point} = main
// DEFINE: %{run} = mlir-cpu-runner %t -e %{entry_point} -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils
@@ -84,12 +82,30 @@ func.func private @pack(%A: tensor<7x16xi32>) {
}
module @transforms attributes { transform.with_named_sequence } {
- transform.named_sequence @__transform_main(%module: !transform.any_op {transform.readonly}) {
+ transform.named_sequence @__transform_main(%module: !transform.any_op {transform.consume}) {
%pack = transform.structured.match ops{["tensor.pack"]} in %module : (!transform.any_op) -> !transform.any_op
- %tiled_linalg_op_p, %loops:2 = transform.structured.tile_using_for %pack tile_sizes [1, 1]
+ // 1. Tile so that we can decompose tensor.pack into tensor.pad,
+ // linalg.transpose, etc (see step 2).
+ %tiled_pack_op_p, %loops:2 = transform.structured.tile_using_for %pack tile_sizes [1, 1]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
+ // 2. Decompose the tiled Op into tensor.pad etc
+ %func_1 = transform.get_parent_op %tiled_pack_op_p {isolated_from_above} : (!transform.any_op) -> !transform.any_op
+ transform.apply_patterns to %func_1 {
+ transform.apply_patterns.linalg.decompose_pack_unpack
+ } : !transform.any_op
+
+ // 3. Bufferize before lowering to LLVM
+ %bufferize = transform.bufferization.one_shot_bufferize %module
+ {bufferize_function_boundaries=true} : (!transform.any_op) -> !transform.any_op
+
+ // 4. Canonicalize
+ %func_2 = transform.structured.match ops{["func.func"]} in %bufferize : (!transform.any_op) -> !transform.op<"func.func">
+ transform.apply_patterns to %func_2 {
+ transform.apply_patterns.canonicalization
+ } : !transform.op<"func.func">
+
transform.yield
}
}
|
@llvm/pr-subscribers-mlir Author: Andrzej Warzyński (banach-space) ChangesFollowing on from #116373, updates "pack-dynamic-inner-tile.mlir" to use This is an intermediate step before introducing vectorization. Full diff: https://github.com/llvm/llvm-project/pull/116788.diff 1 Files Affected:
diff --git a/mlir/test/Integration/Dialect/Linalg/CPU/pack-dynamic-inner-tile.mlir b/mlir/test/Integration/Dialect/Linalg/CPU/pack-dynamic-inner-tile.mlir
index 0428ada86041da..e214847d17c61c 100644
--- a/mlir/test/Integration/Dialect/Linalg/CPU/pack-dynamic-inner-tile.mlir
+++ b/mlir/test/Integration/Dialect/Linalg/CPU/pack-dynamic-inner-tile.mlir
@@ -2,9 +2,7 @@
// DEFINE: -transform-interpreter -test-transform-dialect-erase-schedule |\
// DEFINE: mlir-opt --test-linalg-transform-patterns="test-decompose-tensor-pack"\
// DEFINE: --test-transform-dialect-erase-schedule \
-// DEFINE: -one-shot-bufferize="bufferize-function-boundaries" \
-// DEFINE: -buffer-deallocation-pipeline="private-function-dynamic-ownership" \
-// DEFINE: -cse -canonicalize -test-lower-to-llvm -o %t
+// DEFINE: -test-lower-to-llvm -o %t
// DEFINE: %{entry_point} = main
// DEFINE: %{run} = mlir-cpu-runner %t -e %{entry_point} -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils
@@ -84,12 +82,30 @@ func.func private @pack(%A: tensor<7x16xi32>) {
}
module @transforms attributes { transform.with_named_sequence } {
- transform.named_sequence @__transform_main(%module: !transform.any_op {transform.readonly}) {
+ transform.named_sequence @__transform_main(%module: !transform.any_op {transform.consume}) {
%pack = transform.structured.match ops{["tensor.pack"]} in %module : (!transform.any_op) -> !transform.any_op
- %tiled_linalg_op_p, %loops:2 = transform.structured.tile_using_for %pack tile_sizes [1, 1]
+ // 1. Tile so that we can decompose tensor.pack into tensor.pad,
+ // linalg.transpose, etc (see step 2).
+ %tiled_pack_op_p, %loops:2 = transform.structured.tile_using_for %pack tile_sizes [1, 1]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
+ // 2. Decompose the tiled Op into tensor.pad etc
+ %func_1 = transform.get_parent_op %tiled_pack_op_p {isolated_from_above} : (!transform.any_op) -> !transform.any_op
+ transform.apply_patterns to %func_1 {
+ transform.apply_patterns.linalg.decompose_pack_unpack
+ } : !transform.any_op
+
+ // 3. Bufferize before lowering to LLVM
+ %bufferize = transform.bufferization.one_shot_bufferize %module
+ {bufferize_function_boundaries=true} : (!transform.any_op) -> !transform.any_op
+
+ // 4. Canonicalize
+ %func_2 = transform.structured.match ops{["func.func"]} in %bufferize : (!transform.any_op) -> !transform.op<"func.func">
+ transform.apply_patterns to %func_2 {
+ transform.apply_patterns.canonicalization
+ } : !transform.op<"func.func">
+
transform.yield
}
}
|
%pack = transform.structured.match ops{["tensor.pack"]} in %module : (!transform.any_op) -> !transform.any_op | ||
|
||
%tiled_linalg_op_p, %loops:2 = transform.structured.tile_using_for %pack tile_sizes [1, 1] | ||
// 1. Tile so that we can decompose tensor.pack into tensor.pad, | ||
// linalg.transpose, etc (see step 2). |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I got this from LinalgTransformOps.td which answered my doubt.
Rewrite a tensor.pack into tensor.pad + tensor.expand_shape + linalg.transpose.
This removes need for ambigious inalg.transpose, etc (see step 2).
I dont know if its too much to ask and they may be test example elsewhere , but what does
%A_pack = tensor.pack %A
padding_value(%pad_val : i32)
inner_dims_pos = [0, 1]
inner_tiles = [%tile_size, 1]
into %A_pack_empty : tensor<7x16xi32> -> tensor<?x16x?x1xi32>
%A_cast = tensor.cast %A_pack : tensor<?x16x?x1xi32> to tensor<*xi32>
is expected to become ... even in scant mode as comment would be super.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This is a valid request - thank you for bringing it up, and please don’t hesitate to ask in the future. I've been working on this for so long that I may have lost perspective on what's obvious versus what could use more explanation.
I've added some additional comments to clarify what’s happening here. I’ve intentionally skipped some finer details to keep the explanation focused and easier to follow.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
thanks.
Following on from #116373, updates "pack-dynamic-inner-tile.mlir" to use
TD Ops for all transformations except for lowering to LLVM.
This is an intermediate step before introducing vectorization.