Skip to content

[mlir][linalg][nfc] Update pack-dynamic-inner-tile.mlir #116788

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Nov 21, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -1,10 +1,7 @@
// DEFINE: %{compile} = mlir-opt %s \
// DEFINE: -transform-interpreter -test-transform-dialect-erase-schedule |\
// DEFINE: mlir-opt --test-linalg-transform-patterns="test-decompose-tensor-pack"\
// DEFINE: --test-transform-dialect-erase-schedule \
// DEFINE: -one-shot-bufferize="bufferize-function-boundaries" \
// DEFINE: -buffer-deallocation-pipeline="private-function-dynamic-ownership" \
// DEFINE: -cse -canonicalize -test-lower-to-llvm -o %t
// DEFINE: -transform-interpreter -test-transform-dialect-erase-schedule |\
// DEFINE: mlir-opt \
// DEFINE: -test-lower-to-llvm -o %t
// DEFINE: %{entry_point} = main
// DEFINE: %{run} = mlir-cpu-runner %t -e %{entry_point} -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils
Expand Down Expand Up @@ -84,12 +81,37 @@ func.func private @pack(%A: tensor<7x16xi32>) {
}

module @transforms attributes { transform.with_named_sequence } {
transform.named_sequence @__transform_main(%module: !transform.any_op {transform.readonly}) {
transform.named_sequence @__transform_main(%module: !transform.any_op {transform.consume}) {
%pack = transform.structured.match ops{["tensor.pack"]} in %module : (!transform.any_op) -> !transform.any_op

%tiled_linalg_op_p, %loops:2 = transform.structured.tile_using_for %pack tile_sizes [1, 1]
// 1. Tile so that we can decompose tensor.pack into tensor.pad and other
// Ops (see step 2)
%tiled_pack_op_p, %loops:2 = transform.structured.tile_using_for %pack tile_sizes [1, 1]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)

// 2. Decompose the tiled Op into (trimmed for brevity):
//
// %padded = tensor.pad %slice_of_A (..) :
// tensor<?x?xi32> to tensor<8x1xi32>
// %inserted_slice = tensor.insert_slice %padded into %slice_of_A_pack (...) :
// tensor<8x1xi32> into tensor<1x1x?x1xi32>
//
// NOTE: no tile is transposed, hence no linalg.transpose
%func_1 = transform.get_parent_op %tiled_pack_op_p {isolated_from_above} : (!transform.any_op) -> !transform.any_op
transform.apply_patterns to %func_1 {
transform.apply_patterns.linalg.decompose_pack_unpack
} : !transform.any_op

// 3. Bufferize before lowering to LLVM
%bufferize = transform.bufferization.one_shot_bufferize %module
{bufferize_function_boundaries=true} : (!transform.any_op) -> !transform.any_op

// 4. Canonicalize
%func_2 = transform.structured.match ops{["func.func"]} in %bufferize : (!transform.any_op) -> !transform.op<"func.func">
transform.apply_patterns to %func_2 {
transform.apply_patterns.canonicalization
} : !transform.op<"func.func">

transform.yield
}
}
Expand Down
Loading