-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[mlir][scf]-Fix reverse iterator overflow in loop traversal #128421
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Fix a bug in method `getUntiledProducerFromSliceSource` where address sanitizer fails compilation on heap buffer overflow for accessing value out of the iteration range. This PR fixes the issue and adds a lit test to reproduce it.
@llvm/pr-subscribers-mlir-scf @llvm/pr-subscribers-mlir Author: Amir Bishara (amirBish) ChangesFix a bug in method This PR fixes the issue and adds a lit test to reproduce it. Full diff: https://github.com/llvm/llvm-project/pull/128421.diff 2 Files Affected:
diff --git a/mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp b/mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp
index b548f8ce8b560..af87fb7a79d04 100644
--- a/mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp
+++ b/mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp
@@ -1119,8 +1119,10 @@ static std::tuple<OpResult, std::optional<OpOperand *>>
getUntiledProducerFromSliceSource(OpOperand *source,
ArrayRef<LoopLikeOpInterface> loops) {
std::optional<OpOperand *> destinationIterArg;
+ assert(!loops.empty() && "expected non empty loops container");
auto loopIt = loops.rbegin();
- while (auto iterArg = dyn_cast<BlockArgument>(source->get())) {
+ while (loopIt != loops.rend() && isa<BlockArgument>(source->get())) {
+ auto iterArg = cast<BlockArgument>(source->get());
auto loop = *loopIt;
if (iterArg.getOwner()->getParentOp() != loop)
break;
diff --git a/mlir/test/Interfaces/TilingInterface/tile-and-fuse-using-interface.mlir b/mlir/test/Interfaces/TilingInterface/tile-and-fuse-using-interface.mlir
index bc27840fdf5e9..8a0390a4379cf 100644
--- a/mlir/test/Interfaces/TilingInterface/tile-and-fuse-using-interface.mlir
+++ b/mlir/test/Interfaces/TilingInterface/tile-and-fuse-using-interface.mlir
@@ -634,3 +634,57 @@ module attributes {transform.with_named_sequence} {
// CHECK: %[[INSERT_SLICE:.+]] = tensor.insert_slice %[[GENERIC]] into %[[ITER_ARG]]
// CHECK: scf.yield %[[INSERT_SLICE]]
// CHECK: return %[[FOR_RESULT]]
+
+// -----
+
+#map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+#map1 = affine_map<(d0, d1, d2, d3) -> (d0, d3, d2, d1)>
+module {
+ func.func private @tile_one_consumer_using_tile_and_fuse(%arg0: tensor<16x128x48x96xf32>, %arg1: tensor<16x96x48x128xf32>) -> tensor<16x96x48x128xf32> {
+ %0 = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg0 : tensor<16x128x48x96xf32>) outs(%arg1 : tensor<16x96x48x128xf32>) {
+ ^bb0(%in: f32, %out: f32):
+ linalg.yield %in : f32
+ } -> tensor<16x96x48x128xf32>
+ return %0 : tensor<16x96x48x128xf32>
+ }
+}
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
+ %generic = transform.structured.match ops{["linalg.generic"]} in %arg1
+ : (!transform.any_op) -> !transform.any_op
+ %a, %loops:4 = transform.structured.fuse %generic {tile_sizes = [1, 16, 16, 16], tile_interchange = [0, 1, 2, 3], apply_cleanup = false}
+ : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
+ transform.yield
+ }
+}
+
+// CHECK: func.func private @tile_one_consumer_using_tile_and_fuse(%[[VAL_0:.*]]: tensor<16x128x48x96xf32>, %[[VAL_1:.*]]: tensor<16x96x48x128xf32>) -> tensor<16x96x48x128xf32> {
+// CHECK: %[[VAL_2:.*]] = arith.constant 0 : index
+// CHECK: %[[VAL_3:.*]] = arith.constant 16 : index
+// CHECK: %[[VAL_4:.*]] = arith.constant 128 : index
+// CHECK: %[[VAL_5:.*]] = arith.constant 48 : index
+// CHECK: %[[VAL_6:.*]] = arith.constant 96 : index
+// CHECK: %[[VAL_7:.*]] = arith.constant 1 : index
+// CHECK: %[[VAL_8:.*]] = scf.for %[[VAL_9:.*]] = %[[VAL_2]] to %[[VAL_3]] step %[[VAL_7]] iter_args(%[[VAL_10:.*]] = %[[VAL_1]]) -> (tensor<16x96x48x128xf32>) {
+// CHECK: %[[VAL_11:.*]] = scf.for %[[VAL_12:.*]] = %[[VAL_2]] to %[[VAL_4]] step %[[VAL_3]] iter_args(%[[VAL_13:.*]] = %[[VAL_10]]) -> (tensor<16x96x48x128xf32>) {
+// CHECK: %[[VAL_14:.*]] = scf.for %[[VAL_15:.*]] = %[[VAL_2]] to %[[VAL_5]] step %[[VAL_3]] iter_args(%[[VAL_16:.*]] = %[[VAL_13]]) -> (tensor<16x96x48x128xf32>) {
+// CHECK: %[[VAL_17:.*]] = scf.for %[[VAL_18:.*]] = %[[VAL_2]] to %[[VAL_6]] step %[[VAL_3]] iter_args(%[[VAL_19:.*]] = %[[VAL_16]]) -> (tensor<16x96x48x128xf32>) {
+// CHECK: %[[VAL_20:.*]] = tensor.extract_slice %[[VAL_0]]{{\[}}%[[VAL_9]], %[[VAL_12]], %[[VAL_15]], %[[VAL_18]]] [1, 16, 16, 16] [1, 1, 1, 1] : tensor<16x128x48x96xf32> to tensor<1x16x16x16xf32>
+// CHECK: %[[VAL_21:.*]] = tensor.extract_slice %[[VAL_19]]{{\[}}%[[VAL_9]], %[[VAL_18]], %[[VAL_15]], %[[VAL_12]]] [1, 16, 16, 16] [1, 1, 1, 1] : tensor<16x96x48x128xf32> to tensor<1x16x16x16xf32>
+// CHECK: %[[VAL_22:.*]] = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[VAL_20]] : tensor<1x16x16x16xf32>) outs(%[[VAL_21]] : tensor<1x16x16x16xf32>) {
+// CHECK: ^bb0(%[[VAL_23:.*]]: f32, %[[VAL_24:.*]]: f32):
+// CHECK: linalg.yield %[[VAL_23]] : f32
+// CHECK: } -> tensor<1x16x16x16xf32>
+// CHECK: %[[VAL_25:.*]] = tensor.insert_slice %[[VAL_26:.*]] into %[[VAL_19]]{{\[}}%[[VAL_9]], %[[VAL_18]], %[[VAL_15]], %[[VAL_12]]] [1, 16, 16, 16] [1, 1, 1, 1] : tensor<1x16x16x16xf32> into tensor<16x96x48x128xf32>
+// CHECK: scf.yield %[[VAL_25]] : tensor<16x96x48x128xf32>
+// CHECK: }
+// CHECK: scf.yield %[[VAL_27:.*]] : tensor<16x96x48x128xf32>
+// CHECK: }
+// CHECK: scf.yield %[[VAL_28:.*]] : tensor<16x96x48x128xf32>
+// CHECK: }
+// CHECK: scf.yield %[[VAL_29:.*]] : tensor<16x96x48x128xf32>
+// CHECK: }
+// CHECK: return %[[VAL_30:.*]] : tensor<16x96x48x128xf32>
+// CHECK: }
+// CHECK: }
+
|
ping :) |
matthias-springer
approved these changes
Mar 2, 2025
TinaAMD
pushed a commit
to Xilinx/llvm-project
that referenced
this pull request
Apr 28, 2025
) (#535) Fix a bug in method `getUntiledProducerFromSliceSource` where address sanitizer fails compilation on heap buffer overflow for accessing value out of the iteration range. This PR fixes the issue and adds a lit test to reproduce it. Co-authored-by: Amir Bishara <[email protected]>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Fix a bug in method
getUntiledProducerFromSliceSource
where address sanitizer fails compilation on heapbuffer overflow for accessing value out of the iteration range.
This PR fixes the issue and adds a lit test to reproduce it.