-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[mlir][TOSA] Fix linalg lowering of depthwise conv2d (#130282) #130293
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[mlir][TOSA] Fix linalg lowering of depthwise conv2d (#130282) #130293
Conversation
@llvm/pr-subscribers-mlir-tosa @llvm/pr-subscribers-mlir-linalg Author: Thomas Preud'homme (RoboTux) ChangesCurrent lowering for tosa.depthwise_conv2d assumes if both zero points Full diff: https://github.com/llvm/llvm-project/pull/130293.diff 2 Files Affected:
diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
index 2a2589e19d0ac..c8c1975177b90 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
@@ -477,27 +477,21 @@ class DepthwiseConvConverter
return rewriter.notifyMatchFailure(
op, "weight zero point must be zero for non-int8 integer types");
- bool hasZp = (inputZpVal != 0) || (weightZpVal != 0);
auto weightShape = weightTy.getShape();
auto resultShape = resultTy.getShape();
// Apply padding as necessary.
- TypedAttr zeroAttr = rewriter.getZeroAttr(inputETy);
- if (hasZp) {
- int64_t intMin =
- APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth())
- .getSExtValue();
- int64_t intMax =
- APInt::getSignedMaxValue(inputETy.getIntOrFloatBitWidth())
- .getSExtValue();
+ int64_t intMin = APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth())
+ .getSExtValue();
+ int64_t intMax = APInt::getSignedMaxValue(inputETy.getIntOrFloatBitWidth())
+ .getSExtValue();
- if (inputZpVal < intMin || inputZpVal > intMax)
- return rewriter.notifyMatchFailure(
- op, "tosa.depthwise_conv op quantization has zp outside of input "
- "range");
+ if (inputZpVal < intMin || inputZpVal > intMax)
+ return rewriter.notifyMatchFailure(
+ op, "tosa.depthwise_conv op quantization has zp outside of input "
+ "range");
- zeroAttr = rewriter.getIntegerAttr(inputETy, inputZpVal);
- }
+ TypedAttr zeroAttr = rewriter.getIntegerAttr(inputETy, inputZpVal);
llvm::SmallVector<int64_t> pad;
pad.resize(2, 0);
@@ -536,7 +530,7 @@ class DepthwiseConvConverter
indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultRank));
indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultRank));
- if (!hasZp) {
+ if (inputZpVal == 0 && weightZpVal == 0) {
Value conv = rewriter
.create<linalg::DepthwiseConv2DNhwcHwcmOp>(
loc, linalgConvTy, ValueRange{input, weight},
@@ -556,8 +550,13 @@ class DepthwiseConvConverter
getNParallelLoopsAttrs(resultRank),
[&](OpBuilder &nestedBuilder, Location nestedLoc,
ValueRange args) {
- Value added = nestedBuilder.create<arith::AddFOp>(
- loc, args[0], args[1]);
+ Value added;
+ if (llvm::isa<FloatType>(inputETy))
+ added = nestedBuilder.create<arith::AddFOp>(loc, args[0],
+ args[1]);
+ else
+ added = nestedBuilder.create<arith::AddIOp>(loc, args[0],
+ args[1]);
nestedBuilder.create<linalg::YieldOp>(nestedLoc, added);
})
.getResult(0);
diff --git a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
index 5bb4a3bddb51b..c354853ce9f3c 100644
--- a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
+++ b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
@@ -798,9 +798,10 @@ func.func @depthwise_conv2d_dyn_w_h(%arg0: tensor<2x?x?x3xf32>, %arg1: tensor<3x
// CHECK: arith.subi
// CHECK: arith.muli
// CHECK: arith.divui
+ // CHECK: [[CST0:%.+]] = arith.constant 0
// CHECK: %[[PADDED:.+]] = tensor.pad %arg0 low[0, 1, 3, 0] high[0, 2, 4, 0] {
// CHECK: ^bb0(%[[ARG3:[0-9a-zA-Z_]+]]: index, %[[ARG4:[0-9a-zA-Z_]+]]: index, %[[ARG5:[0-9a-zA-Z_]+]]: index, %[[ARG6:[0-9a-zA-Z_]+]]: index):
- // CHECK: tensor.yield %cst : f32
+ // CHECK: tensor.yield [[CST0]] : f32
// CHECK: } : tensor<2x?x?x3xf32> to tensor<2x?x?x3xf32>
// CHECK: %[[CONV:.+]] = linalg.depthwise_conv_2d_nhwc_hwcm {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<[1, 2]> : tensor<2xi64>} ins(%[[PADDED]], %arg1 : tensor<2x?x?x3xf32>, tensor<3x6x3x5xf32>) outs(%{{.*}} : tensor<2x?x?x3x5xf32>) -> tensor<2x?x?x3x5xf32>
// CHECK: %[[COLLAPSED:.+]] = tensor.collapse_shape %[[CONV]] {{\[}}[0], [1], [2], [3, 4]]
@@ -812,6 +813,30 @@ func.func @depthwise_conv2d_dyn_w_h(%arg0: tensor<2x?x?x3xf32>, %arg1: tensor<3x
// -----
+// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d3)>
+// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+
+// CHECK-LABEL: @depthwise_int_conv_zero_zp
+func.func @depthwise_int_conv_zero_zp(%arg0 : tensor<1x7x5x3xi8>, %arg1 : tensor<3x1x3x11xi8>, %arg2 : tensor<33xi32>) -> () {
+ // CHECK: [[INIT:%.+]] = tensor.empty()
+ // CHECK: [[CST0:%.+]] = arith.constant 0
+ // CHECK: [[FILL:%.+]] = linalg.fill ins([[CST0]]{{.*}}outs([[INIT]]
+ // CHECK: [[OUT:%.+]] = tensor.empty()
+ // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_nhwc_hwcm {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x7x5x3xi8>, tensor<3x1x3x11xi8>) outs([[FILL]] : tensor<1x5x5x3x11xi32>)
+ // CHECK: [[COLLAPSED:%.+]] = tensor.collapse_shape [[DEPTH]] {{\[}}[0], [1], [2], [3, 4]]
+ // CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, [[COLLAPSED]] : tensor<33xi32>, tensor<1x5x5x33xi32>) outs([[OUT]] : tensor<1x5x5x33xi32>) {
+ // CHECK: ^bb0(%[[ARG3:[0-9a-zA-Z_]+]]: i32, %[[ARG4:[0-9a-zA-Z_]+]]: i32, %[[ARG5:[0-9a-zA-Z_]+]]: i32):
+ // CHECK: [[ADD:%.+]] = arith.addi %[[ARG3]], %[[ARG4]] : i32
+ // CHECK: linalg.yield [[ADD]] : i32
+ // CHECK: } -> tensor<1x5x5x33xi32>
+ %input_zp = "tosa.const"() <{values = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
+ %weight_zp = "tosa.const"() <{values = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
+ %2 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %input_zp, %weight_zp {acc_type = i32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 1, 1> } : (tensor<1x7x5x3xi8>, tensor<3x1x3x11xi8>, tensor<33xi32>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x5x5x33xi32>
+ return
+}
+
+// -----
+
// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d4)>
// CHECK: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
|
Current lowering for tosa.depthwise_conv2d assumes if both zero points are zero then it's a floating-point operation by hardcoding the use of a arith.addf in the lowered code. Fix code to check for the element type to decide what add operation to use.
ef8e883
to
4748598
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM, thanks!
Current lowering for tosa.depthwise_conv2d assumes if both zero points
are zero then it's a floating-point operation by hardcoding the use of a
arith.addf in the lowered code. Fix code to check for the element type
to decide what add operation to use.