-
Notifications
You must be signed in to change notification settings - Fork 14.3k
Revert "[mlir][tosa] Change MatMul zero-point to inputs" #130330
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This reverts commit 106c964.
@llvm/pr-subscribers-mlir @llvm/pr-subscribers-mlir-tosa Author: Jerry-Ge (Jerry-Ge) ChangesReverts llvm/llvm-project#129785. Need rebase. Patch is 45.71 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/130330.diff 15 Files Affected:
diff --git a/mlir/include/mlir/Dialect/Tosa/IR/TosaComplianceData.h.inc b/mlir/include/mlir/Dialect/Tosa/IR/TosaComplianceData.h.inc
index d3fd4c3d1d3e1..a9b458acd87f2 100644
--- a/mlir/include/mlir/Dialect/Tosa/IR/TosaComplianceData.h.inc
+++ b/mlir/include/mlir/Dialect/Tosa/IR/TosaComplianceData.h.inc
@@ -35,11 +35,9 @@ profileComplianceMap = {
{fp16T, fp16T, fp32T, fp32T},
{fp32T, fp32T, fp32T, fp32T}}}}},
{"tosa.matmul",
- {{{Profile::pro_int}, {{i8T, i8T, i8T, i8T, i32T}}},
+ {{{Profile::pro_int}, {{i8T, i8T, i32T}}},
{{Profile::pro_fp},
- {{fp16T, fp16T, fp16T, fp16T, fp16T},
- {fp16T, fp16T, fp16T, fp16T, fp32T},
- {fp32T, fp32T, fp32T, fp32T, fp32T}}}}},
+ {{fp16T, fp16T, fp16T}, {fp16T, fp16T, fp32T}, {fp32T, fp32T, fp32T}}}}},
{"tosa.max_pool2d",
{{{Profile::pro_int}, {{i8T, i8T}}},
{{Profile::pro_fp}, {{fp16T, fp16T}, {fp32T, fp32T}}}}},
@@ -275,10 +273,10 @@ extensionComplianceMap = {
{{Extension::int16}, {{i16T, i8T, i48T, i48T}}},
{{Extension::bf16}, {{bf16T, bf16T, fp32T, fp32T}}}}},
{"tosa.matmul",
- {{{Extension::int16}, {{i16T, i16T, i16T, i16T, i48T}}},
- {{Extension::fp8e4m3}, {{fp8e4m3T, fp8e4m3T, fp8e4m3T, fp8e4m3T, fp16T}}},
- {{Extension::fp8e5m2}, {{fp8e5m2T, fp8e5m2T, fp8e5m2T, fp8e5m2T, fp16T}}},
- {{Extension::bf16}, {{bf16T, bf16T, bf16T, bf16T, fp32T}}}}},
+ {{{Extension::int16}, {{i16T, i16T, i48T}}},
+ {{Extension::fp8e4m3}, {{fp8e4m3T, fp8e4m3T, fp16T}}},
+ {{Extension::fp8e5m2}, {{fp8e5m2T, fp8e5m2T, fp16T}}},
+ {{Extension::bf16}, {{bf16T, bf16T, fp32T}}}}},
{"tosa.max_pool2d",
{{{Extension::int16}, {{i16T, i16T}}},
{{Extension::fp8e4m3}, {{fp8e4m3T, fp8e4m3T}}},
diff --git a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
index ecddc9fe9a13d..097f78cd487ea 100644
--- a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
+++ b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
@@ -311,8 +311,8 @@ def Tosa_MatMulOp : Tosa_InferShapedTypeOp<"matmul"> {
let arguments = (ins
Tosa_Tensor3D:$a,
Tosa_Tensor3D:$b,
- Tosa_ScalarIntOrFloatTensor:$a_zp,
- Tosa_ScalarIntOrFloatTensor:$b_zp
+ OptionalAttr<I32Attr>:$a_zp,
+ OptionalAttr<I32Attr>:$b_zp
);
let results = (outs
@@ -324,13 +324,6 @@ def Tosa_MatMulOp : Tosa_InferShapedTypeOp<"matmul"> {
Extension<[Tosa_EXT_INT16, Tosa_EXT_FP8E4M3, Tosa_EXT_FP8E5M2, Tosa_EXT_BF16]>,
];
- let extraClassDeclaration = [{
- FailureOr<int64_t> getAZeroPoint();
- FailureOr<int64_t> getBZeroPoint();
- LogicalResult verifyAZeroPoint(int64_t zp);
- LogicalResult verifyBZeroPoint(int64_t zp);
- }];
-
let builders = [Tosa_MatMulOpQuantInfoBuilder];
let hasVerifier = 1;
}
diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
index 13c62b2d3e91c..2a2589e19d0ac 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
@@ -270,8 +270,8 @@ class ConvConverter : public OpConversionPattern<TosaConvOp> {
return rewriter.notifyMatchFailure(
op, "weight zero point cannot be statically determined");
- const int64_t inputZpVal = *maybeIZp;
- const int64_t weightZpVal = *maybeWZp;
+ int64_t inputZpVal = *maybeIZp;
+ int64_t weightZpVal = *maybeWZp;
if (op.verifyInputZeroPoint(inputZpVal).failed())
return rewriter.notifyMatchFailure(
@@ -466,8 +466,8 @@ class DepthwiseConvConverter
return rewriter.notifyMatchFailure(
op, "weight zero point cannot be statically determined");
- const int64_t inputZpVal = *maybeIZp;
- const int64_t weightZpVal = *maybeWZp;
+ int64_t inputZpVal = *maybeIZp;
+ int64_t weightZpVal = *maybeWZp;
if (op.verifyInputZeroPoint(inputZpVal).failed())
return rewriter.notifyMatchFailure(
@@ -621,38 +621,15 @@ class MatMulConverter : public OpConversionPattern<tosa::MatMulOp> {
.create<linalg::FillOp>(loc, ValueRange{zero},
ValueRange{emptyTensor})
.result();
-
- FailureOr<int64_t> maybeAZp = op.getAZeroPoint();
- FailureOr<int64_t> maybeBZp = op.getBZeroPoint();
- if (failed(maybeAZp))
- return rewriter.notifyMatchFailure(
- op, "input a zero point cannot be statically determined");
- if (failed(maybeBZp))
- return rewriter.notifyMatchFailure(
- op, "input b zero point cannot be statically determined");
-
- const int64_t aZpVal = *maybeAZp;
- const int64_t bZpVal = *maybeBZp;
-
- if (op.verifyAZeroPoint(aZpVal).failed())
- return rewriter.notifyMatchFailure(
- op, "input a zero point must be zero for non-int8 integer types");
-
- if (op.verifyBZeroPoint(bZpVal).failed())
- return rewriter.notifyMatchFailure(
- op, "input b zero point must be zero for non-int8 integer types");
-
- if (aZpVal == 0 && bZpVal == 0) {
+ if (!op.getAZp() && !op.getBZp()) {
rewriter.replaceOpWithNewOp<linalg::BatchMatmulOp>(
op, TypeRange{op.getType()},
ValueRange{adaptor.getA(), adaptor.getB()}, ValueRange{zeroTensor});
return success();
}
- auto aZp = rewriter.create<arith::ConstantOp>(
- loc, rewriter.getI32IntegerAttr(aZpVal));
- auto bZp = rewriter.create<arith::ConstantOp>(
- loc, rewriter.getI32IntegerAttr(bZpVal));
+ auto aZp = rewriter.create<arith::ConstantOp>(loc, op.getAZpAttr());
+ auto bZp = rewriter.create<arith::ConstantOp>(loc, op.getBZpAttr());
rewriter.replaceOpWithNewOp<linalg::QuantizedBatchMatmulOp>(
op, TypeRange{op.getType()},
ValueRange{adaptor.getA(), adaptor.getB(), aZp, bZp}, zeroTensor);
@@ -857,8 +834,8 @@ class AvgPool2dConverter : public OpRewritePattern<tosa::AvgPool2dOp> {
return rewriter.notifyMatchFailure(
op, "output zero point could not be statically determined");
- const int64_t inputZpVal = *maybeIZp;
- const int64_t outputZpVal = *maybeOZp;
+ int64_t inputZpVal = *maybeIZp;
+ int64_t outputZpVal = *maybeOZp;
// Apply padding as necessary.
llvm::SmallVector<int64_t> pad;
diff --git a/mlir/lib/Dialect/Tosa/IR/ShardingInterfaceImpl.cpp b/mlir/lib/Dialect/Tosa/IR/ShardingInterfaceImpl.cpp
index 6dcb7c845b21f..ffbb707344b8c 100644
--- a/mlir/lib/Dialect/Tosa/IR/ShardingInterfaceImpl.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/ShardingInterfaceImpl.cpp
@@ -55,8 +55,6 @@ struct MatMulOpSharding
SmallVector<AffineMap> maps;
maps.push_back(AffineMap::getMultiDimMapWithTargets(4, {0, 1, 3}, ctx));
maps.push_back(AffineMap::getMultiDimMapWithTargets(4, {0, 3, 2}, ctx));
- maps.push_back(AffineMap::get(0, 0, {}, ctx));
- maps.push_back(AffineMap::get(0, 0, {}, ctx));
maps.push_back(AffineMap::getMultiDimMapWithTargets(4, {0, 1, 2}, ctx));
return maps;
}
diff --git a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
index 7a991b3876f69..4711122dc76e2 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
@@ -629,13 +629,23 @@ buildTransConvOpWithQuantInfo(OpBuilder &builder, OperationState &result,
static void buildMatMulOpWithQuantInfo(OpBuilder &builder,
OperationState &result, Type outputType,
Value a, Value b) {
- auto zps = createZPsAsConst(builder, a, b);
- result.addOperands({a, b, zps.first, zps.second});
+ result.addOperands({a, b});
+ auto quantAttr = ::buildMatMulOpQuantizationAttr(builder, a, b);
- Type finalOutputType{outputType};
- if (auto quantAttr = buildMatMulOpQuantizationAttr(builder, a, b)) {
- auto eType = getStorageElementTypeOrSelf(a.getType());
- auto inputBits = eType.getIntOrFloatBitWidth();
+ if (quantAttr) {
+ result.addAttribute("a_zp", builder.getI32IntegerAttr(
+ static_cast<int32_t>(quantAttr.getAZp())));
+ result.addAttribute("b_zp", builder.getI32IntegerAttr(
+ static_cast<int32_t>(quantAttr.getBZp())));
+
+ auto inputType = llvm::dyn_cast<ShapedType>(a.getType());
+ assert(inputType && "Input must be a shaped tensor type!");
+
+ auto inputQType = llvm::dyn_cast<mlir::quant::UniformQuantizedType>(
+ inputType.getElementType());
+ assert(inputQType && "Tensor must have quantized datatype!");
+
+ unsigned inputBits = inputQType.getStorageTypeIntegralWidth();
auto outputShapedType = llvm::dyn_cast<ShapedType>(outputType);
assert(outputShapedType && "Output must be a shaped type");
@@ -645,10 +655,11 @@ static void buildMatMulOpWithQuantInfo(OpBuilder &builder,
accElementType = builder.getIntegerType(48);
else
accElementType = builder.getI32Type();
-
- finalOutputType = outputShapedType.clone(accElementType);
+ auto accType = outputShapedType.clone(accElementType);
+ result.addTypes(accType);
+ } else {
+ result.addTypes(outputType);
}
- result.addTypes(finalOutputType);
}
/// Both the tosa.avg_pool2d and unary ops use the same
@@ -1129,39 +1140,16 @@ LogicalResult MatMulOp::verify() {
return emitOpError("expect quantized operands to have same widths, got ")
<< aQuantWidth << " and " << bQuantWidth;
}
- } else {
- // non-quantized element types
- if (aElementType != bElementType) {
- return emitOpError("expect same element type for inputs a and b, got ")
- << aElementType << " and " << bElementType;
- }
- }
- // check a_zp and b_zp
- auto aEType = getStorageElementTypeOrSelf(aType);
- auto aZpEType = getStorageElementTypeOrSelf(getAZp().getType());
- if (aEType != aZpEType) {
- return emitOpError("expect input a and a_zp have the same "
- "element type, got ")
- << aEType << " and " << aZpEType;
+ return success();
}
- auto bEType = getStorageElementTypeOrSelf(bType);
- auto bZpEType = getStorageElementTypeOrSelf(getBZp().getType());
- if (bEType != bZpEType) {
- return emitOpError("expect input b and b_zp have the same "
- "element type, got ")
- << bEType << " and " << bZpEType;
+ // non-quantized element types
+ if (aElementType != bElementType) {
+ return emitOpError("expect same element type for inputs a and b, got ")
+ << aElementType << " and " << bElementType;
}
- FailureOr<int64_t> maybeAZp = getAZeroPoint();
- if (succeeded(maybeAZp) && verifyAZeroPoint(*maybeAZp).failed())
- return failure();
-
- FailureOr<int64_t> maybeBZp = getBZeroPoint();
- if (succeeded(maybeBZp) && verifyBZeroPoint(*maybeBZp).failed())
- return failure();
-
return success();
}
@@ -1726,8 +1714,6 @@ ZERO_POINT_HELPER(TransposeConv2DOp, Input)
ZERO_POINT_HELPER(TransposeConv2DOp, Weight)
ZERO_POINT_HELPER(AvgPool2dOp, Input)
ZERO_POINT_HELPER(AvgPool2dOp, Output)
-ZERO_POINT_HELPER(MatMulOp, A)
-ZERO_POINT_HELPER(MatMulOp, B)
#undef ZERO_POINT_HELPER
LogicalResult tosa::TransposeOp::inferReturnTypeComponents(
diff --git a/mlir/lib/Dialect/Tosa/Transforms/TosaProfileCompliance.cpp b/mlir/lib/Dialect/Tosa/Transforms/TosaProfileCompliance.cpp
index 983062ffd7912..345616c9563b5 100644
--- a/mlir/lib/Dialect/Tosa/Transforms/TosaProfileCompliance.cpp
+++ b/mlir/lib/Dialect/Tosa/Transforms/TosaProfileCompliance.cpp
@@ -178,15 +178,6 @@ void ProfileInfoDepot::populateProfileInfo(tosa::RescaleOp op) {
addValue(op.getOutput());
}
-template <>
-void ProfileInfoDepot::populateProfileInfo(tosa::MatMulOp op) {
- addValue(op.getA());
- addValue(op.getB());
- addValue(op.getAZp());
- addValue(op.getBZp());
- addValue(op.getOutput());
-}
-
LogicalResult ProfileInfoDepot::populatationDispatch(Operation *op) {
// This helper function only populates the info for the customised operands.
#define POPULATE_PROFILE_INFO_CUSTOM(tosaOp) \
@@ -227,7 +218,6 @@ LogicalResult ProfileInfoDepot::populatationDispatch(Operation *op) {
POPULATE_PROFILE_INFO_CUSTOM(Resize)
POPULATE_PROFILE_INFO_CUSTOM(Select)
POPULATE_PROFILE_INFO_CUSTOM(Rescale)
- POPULATE_PROFILE_INFO_CUSTOM(MatMul)
// Type Invariant Extension, a capability extension that is independent
// of the data type, meaning any compatible type can be used. No type
@@ -245,6 +235,7 @@ LogicalResult ProfileInfoDepot::populatationDispatch(Operation *op) {
POPULATE_PROFILE_INFO_COMMON(Cast)
POPULATE_PROFILE_INFO_COMMON(Const)
POPULATE_PROFILE_INFO_COMMON(ArgMax)
+ POPULATE_PROFILE_INFO_COMMON(MatMul)
POPULATE_PROFILE_INFO_COMMON(Sub)
POPULATE_PROFILE_INFO_COMMON(Maximum)
POPULATE_PROFILE_INFO_COMMON(Minimum)
diff --git a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
index 341f773c79a5e..5bb4a3bddb51b 100644
--- a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
+++ b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
@@ -8,9 +8,7 @@ func.func @matmul(%arg0: tensor<1x5x3xf32>, %arg1: tensor<1x3x6xf32>) -> (tensor
// CHECK: [[INIT:%.+]] = tensor.empty()
// CHECK: [[FILLED:%.+]] = linalg.fill ins([[C0]] : f32) outs([[INIT]] : tensor<1x5x6xf32>) -> tensor<1x5x6xf32>
// CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<1x5x3xf32>, tensor<1x3x6xf32>) outs([[FILLED]] : tensor<1x5x6xf32>) -> tensor<1x5x6xf32>
- %a_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %b_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %0 = tosa.matmul %arg0, %arg1, %a_zp, %b_zp : (tensor<1x5x3xf32>, tensor<1x3x6xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x5x6xf32>
+ %0 = tosa.matmul %arg0, %arg1 : (tensor<1x5x3xf32>, tensor<1x3x6xf32>) -> tensor<1x5x6xf32>
return %0 : tensor<1x5x6xf32>
}
@@ -25,9 +23,7 @@ func.func @matmul_quantized(%arg0: tensor<1x5x3xi8>, %arg1: tensor<1x3x6xi8>) ->
// CHECK: [[ONE:%.+]] = arith.constant 1
// CHECK: [[TWO:%.+]] = arith.constant 2
// CHECK: linalg.quantized_batch_matmul ins(%arg0, %arg1, [[ONE]], [[TWO]] : tensor<1x5x3xi8>, tensor<1x3x6xi8>, i32, i32) outs([[FILLED]] : tensor<1x5x6xi32>) -> tensor<1x5x6xi32>
- %a_zp = "tosa.const"() <{values = dense<1> : tensor<1xi8>}> : () -> tensor<1xi8>
- %b_zp = "tosa.const"() <{values = dense<2> : tensor<1xi8>}> : () -> tensor<1xi8>
- %0 = tosa.matmul %arg0, %arg1, %a_zp, %b_zp : (tensor<1x5x3xi8>, tensor<1x3x6xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x5x6xi32>
+ %0 = tosa.matmul %arg0, %arg1 {a_zp = 1 : i32, b_zp = 2 : i32} : (tensor<1x5x3xi8>, tensor<1x3x6xi8>) -> tensor<1x5x6xi32>
return %0 : tensor<1x5x6xi32>
}
@@ -41,9 +37,7 @@ func.func @matmul_dyn_batch(%arg0: tensor<?x5x3xf32>, %arg1: tensor<?x3x6xf32>)
// CHECK: %[[INIT:.+]] = tensor.empty(%[[DIM]])
// CHECK: %[[FILLED:.+]] = linalg.fill ins(%[[C0_0]] : f32) outs(%[[INIT]] : tensor<?x5x6xf32>) -> tensor<?x5x6xf32>
// CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<?x5x3xf32>, tensor<?x3x6xf32>) outs(%[[FILLED]] : tensor<?x5x6xf32>) -> tensor<?x5x6xf32>
- %a_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %b_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %0 = tosa.matmul %arg0, %arg1, %a_zp, %b_zp : (tensor<?x5x3xf32>, tensor<?x3x6xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<?x5x6xf32>
+ %0 = tosa.matmul %arg0, %arg1 : (tensor<?x5x3xf32>, tensor<?x3x6xf32>) -> tensor<?x5x6xf32>
return %0 : tensor<?x5x6xf32>
}
@@ -57,9 +51,7 @@ func.func @matmul_dyn_independent_dim(%arg0: tensor<1x5x3xf32>, %arg1: tensor<1x
// CHECK: %[[INIT:.+]] = tensor.empty(%[[DIM]])
// CHECK: %[[FILLED:.+]] = linalg.fill ins(%[[C0]] : f32) outs(%[[INIT]] : tensor<1x5x?xf32>) -> tensor<1x5x?xf32>
// CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<1x5x3xf32>, tensor<1x3x?xf32>) outs(%[[FILLED]] : tensor<1x5x?xf32>) -> tensor<1x5x?xf32>
- %a_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %b_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %0 = tosa.matmul %arg0, %arg1, %a_zp, %b_zp : (tensor<1x5x3xf32>, tensor<1x3x?xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x5x?xf32>
+ %0 = tosa.matmul %arg0, %arg1 : (tensor<1x5x3xf32>, tensor<1x3x?xf32>) -> tensor<1x5x?xf32>
return %0 : tensor<1x5x?xf32>
}
@@ -71,9 +63,7 @@ func.func @matmul_dyn_independent_dim(%arg0: tensor<1x5x?xf32>, %arg1: tensor<1x
// CHECK: %[[INIT:.+]] = tensor.empty()
// CHECK: %[[FILLED:.+]] = linalg.fill ins(%[[C0]] : f32) outs(%[[INIT]] : tensor<1x5x6xf32>) -> tensor<1x5x6xf32>
// CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<1x5x?xf32>, tensor<1x?x6xf32>) outs(%[[FILLED]] : tensor<1x5x6xf32>) -> tensor<1x5x6xf32>
- %a_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %b_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %0 = tosa.matmul %arg0, %arg1, %a_zp, %b_zp : (tensor<1x5x?xf32>, tensor<1x?x6xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x5x6xf32>
+ %0 = tosa.matmul %arg0, %arg1 : (tensor<1x5x?xf32>, tensor<1x?x6xf32>) -> tensor<1x5x6xf32>
return %0 : tensor<1x5x6xf32>
}
@@ -87,9 +77,7 @@ func.func @matmul_dyn_output(%arg0: tensor<1x1x8xf32>, %arg1: tensor<1x8x1xf32>)
// CHECK: %[[INIT:.+]] = tensor.empty(%[[DIM0]]) : tensor<?x1x1xf32>
// CHECK: %[[FILLED:.+]] = linalg.fill ins(%[[CST]] : f32) outs(%[[INIT]] : tensor<?x1x1xf32>) -> tensor<?x1x1xf32>
// CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<1x1x8xf32>, tensor<1x8x1xf32>) outs(%[[FILLED]] : tensor<?x1x1xf32>) -> tensor<?x1x1xf32>
- %a_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %b_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %0 = tosa.matmul %arg0, %arg1, %a_zp, %b_zp : (tensor<1x1x8xf32>, tensor<1x8x1xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<?x1x1xf32>
+ %0 = tosa.matmul %arg0, %arg1 : (tensor<1x1x8xf32>, tensor<1x8x1xf32>) -> tensor<?x1x1xf32>
return %0 : tensor<?x1x1xf32>
}
diff --git a/mlir/test/Dialect/Mesh/sharding-propagation.mlir b/mlir/test/Dialect/Mesh/sharding-propagation.mlir
index 14c67e670e921..83136f613b020 100644
--- a/mlir/test/Dialect/Mesh/sharding-propagation.mlir
+++ b/mlir/test/Dialect/Mesh/sharding-propagation.mlir
@@ -98,16 +98,14 @@ func.func @arrow_structure(%arg0: tensor<8x16xf32>) -> (tensor<8x16xf32>, tensor
}
// CHECK-LABEL: func.func @matmul_on_def_shard_batch_and_m
-// CHECK-SAME: %[[ARG0:.*]]: tensor<2x16x8xf32>, %[[ARG1:.*]]: tensor<2x8x32xf32>, %[[ARG2:.*]]: tensor<1xf32>
-func.func @matmul_on_def_shard_batch_and_m(%arg0: tensor<2x16x8xf32>, %arg1: tensor<2x8x32xf32>, %arg2: tensor<1xf32>) -> tensor<2x16x32xf32> {
+// CHECK-SAME: %[[ARG0:.*]]: tensor<2x16x8xf32>, %[[ARG1:.*]]: tensor<2x8x32xf32>
+func.func @matmul_on_def_shard_batch_and_m(%arg0: tensor<2x16x8xf32>, %arg1: tensor<2x8x32xf32>) -> tensor<2x16x32xf32> {
// CHECK-NEXT: %[[S0:.*]] = mesh.sharding @mesh_2d split_axes = {{\[\[}}0], [1]] : !mesh.sharding
// CHECK-NEXT: %[[V0:.*]] = mesh.shard %[[ARG0]] to %[[S0]] annotate_for_users : tensor<2x16x8xf32>
// CHECK-NEXT: %[[S1:.*]] = mesh.sharding @mesh_2d split_axes = {{\[\[}}0]] : !mesh.sharding
// CHECK-NEXT: %[[V1:.*]] = mesh.shard %[[ARG1]] to %[[S1]] annotate_for_users : tensor<2x8x32xf32>
- // CHECK-NEXT: %[[S2:.*]] = mesh.sharding @mesh_2d split_axes = {{\[\[}}]] : !mesh.sharding
- // CHECK-NEXT: %[[ZP:.*]] = mesh.shard %[[ARG2]] to %[[S2]] annotate_for_users : tensor<1xf32>
- // CHECK-NEXT: %[[V2:.*]] = tosa.matmul %[[V0]], %[[V1]], %[[ZP]], %[[ZP]]
- %0 = tosa.matmul %arg0, %arg1, %arg2, %arg2 : (tensor<2x16x8xf32>, tensor<2x8x32xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<2x16x32xf32>
+ // CHECK-NEXT: %[[V2:.*]] = tosa.matmul %[[V0]], %[[V1]]
+ %0 = tosa.matmul %arg0, %arg1 : (tensor<2x16x8xf32>, tensor<2x8x32xf32>) -> tensor<2x16x32xf32>
// CHECK-NEXT: %[[S3:.*]] = mesh.sharding @mesh_2d split_axes = {{\[\[}}0], [1]] : !mesh.sharding
// CHECK-NEXT: %[[V3:.*]] = mesh.shard %[[V2]] to %[[S3]] :...
[truncated]
|
jph-13
pushed a commit
to jph-13/llvm-project
that referenced
this pull request
Mar 21, 2025
Reverts llvm#129785. Need rebase.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Reverts #129785. Need rebase.