Skip to content

[mlir][tosa] Change MatMul zero-point to inputs #130332

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 7, 2025

Conversation

Tai78641
Copy link
Contributor

@Tai78641 Tai78641 commented Mar 7, 2025

  • Change zero-point attributes to inputs
  • Fix relevant mlir tests
  • Enhance ShardingInterface in MatMul

* Change zero-point attributes to inputs
* Fix relevant mlir tests
* Enhance ShardingInterface in MatMul

Signed-off-by: Udaya Ranga <[email protected]>
Change-Id: Ia58b15cba546a948a6a4d8e8ee26a72cd050de4e
@llvmbot
Copy link
Member

llvmbot commented Mar 7, 2025

@llvm/pr-subscribers-mlir-linalg

@llvm/pr-subscribers-mlir

Author: Tai Ly (Tai78641)

Changes
  • Change zero-point attributes to inputs
  • Fix relevant mlir tests
  • Enhance ShardingInterface in MatMul

Patch is 47.21 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/130332.diff

15 Files Affected:

  • (modified) mlir/include/mlir/Dialect/Tosa/IR/TosaComplianceData.h.inc (+8-6)
  • (modified) mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td (+9-2)
  • (modified) mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp (+32-9)
  • (modified) mlir/lib/Dialect/Tosa/IR/ShardingInterfaceImpl.cpp (+2)
  • (modified) mlir/lib/Dialect/Tosa/IR/TosaOps.cpp (+39-25)
  • (modified) mlir/lib/Dialect/Tosa/Transforms/TosaProfileCompliance.cpp (+10-1)
  • (modified) mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir (+18-6)
  • (modified) mlir/test/Dialect/Mesh/sharding-propagation.mlir (+39-27)
  • (modified) mlir/test/Dialect/Tosa/availability.mlir (+2-2)
  • (modified) mlir/test/Dialect/Tosa/invalid.mlir (+41-1)
  • (modified) mlir/test/Dialect/Tosa/level_check.mlir (+2-1)
  • (modified) mlir/test/Dialect/Tosa/ops.mlir (+9-3)
  • (modified) mlir/test/Dialect/Tosa/profile_all_unsupported.mlir (+2-2)
  • (modified) mlir/test/Dialect/Tosa/profile_pro_fp_unsupported.mlir (+2-2)
  • (modified) mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir (+23-13)
diff --git a/mlir/include/mlir/Dialect/Tosa/IR/TosaComplianceData.h.inc b/mlir/include/mlir/Dialect/Tosa/IR/TosaComplianceData.h.inc
index a9b458acd87f2..d3fd4c3d1d3e1 100644
--- a/mlir/include/mlir/Dialect/Tosa/IR/TosaComplianceData.h.inc
+++ b/mlir/include/mlir/Dialect/Tosa/IR/TosaComplianceData.h.inc
@@ -35,9 +35,11 @@ profileComplianceMap = {
         {fp16T, fp16T, fp32T, fp32T},
         {fp32T, fp32T, fp32T, fp32T}}}}},
     {"tosa.matmul",
-     {{{Profile::pro_int}, {{i8T, i8T, i32T}}},
+     {{{Profile::pro_int}, {{i8T, i8T, i8T, i8T, i32T}}},
       {{Profile::pro_fp},
-       {{fp16T, fp16T, fp16T}, {fp16T, fp16T, fp32T}, {fp32T, fp32T, fp32T}}}}},
+       {{fp16T, fp16T, fp16T, fp16T, fp16T},
+        {fp16T, fp16T, fp16T, fp16T, fp32T},
+        {fp32T, fp32T, fp32T, fp32T, fp32T}}}}},
     {"tosa.max_pool2d",
      {{{Profile::pro_int}, {{i8T, i8T}}},
       {{Profile::pro_fp}, {{fp16T, fp16T}, {fp32T, fp32T}}}}},
@@ -273,10 +275,10 @@ extensionComplianceMap = {
       {{Extension::int16}, {{i16T, i8T, i48T, i48T}}},
       {{Extension::bf16}, {{bf16T, bf16T, fp32T, fp32T}}}}},
     {"tosa.matmul",
-     {{{Extension::int16}, {{i16T, i16T, i48T}}},
-      {{Extension::fp8e4m3}, {{fp8e4m3T, fp8e4m3T, fp16T}}},
-      {{Extension::fp8e5m2}, {{fp8e5m2T, fp8e5m2T, fp16T}}},
-      {{Extension::bf16}, {{bf16T, bf16T, fp32T}}}}},
+     {{{Extension::int16}, {{i16T, i16T, i16T, i16T, i48T}}},
+      {{Extension::fp8e4m3}, {{fp8e4m3T, fp8e4m3T, fp8e4m3T, fp8e4m3T, fp16T}}},
+      {{Extension::fp8e5m2}, {{fp8e5m2T, fp8e5m2T, fp8e5m2T, fp8e5m2T, fp16T}}},
+      {{Extension::bf16}, {{bf16T, bf16T, bf16T, bf16T, fp32T}}}}},
     {"tosa.max_pool2d",
      {{{Extension::int16}, {{i16T, i16T}}},
       {{Extension::fp8e4m3}, {{fp8e4m3T, fp8e4m3T}}},
diff --git a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
index 097f78cd487ea..ecddc9fe9a13d 100644
--- a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
+++ b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
@@ -311,8 +311,8 @@ def Tosa_MatMulOp : Tosa_InferShapedTypeOp<"matmul"> {
   let arguments = (ins
     Tosa_Tensor3D:$a,
     Tosa_Tensor3D:$b,
-    OptionalAttr<I32Attr>:$a_zp,
-    OptionalAttr<I32Attr>:$b_zp
+    Tosa_ScalarIntOrFloatTensor:$a_zp,
+    Tosa_ScalarIntOrFloatTensor:$b_zp
   );
 
   let results = (outs
@@ -324,6 +324,13 @@ def Tosa_MatMulOp : Tosa_InferShapedTypeOp<"matmul"> {
     Extension<[Tosa_EXT_INT16, Tosa_EXT_FP8E4M3, Tosa_EXT_FP8E5M2, Tosa_EXT_BF16]>,
   ];
 
+  let extraClassDeclaration = [{
+    FailureOr<int64_t> getAZeroPoint();
+    FailureOr<int64_t> getBZeroPoint();
+    LogicalResult verifyAZeroPoint(int64_t zp);
+    LogicalResult verifyBZeroPoint(int64_t zp);
+  }];
+
   let builders = [Tosa_MatMulOpQuantInfoBuilder];
   let hasVerifier = 1;
 }
diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
index 2a2589e19d0ac..13c62b2d3e91c 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
@@ -270,8 +270,8 @@ class ConvConverter : public OpConversionPattern<TosaConvOp> {
       return rewriter.notifyMatchFailure(
           op, "weight zero point cannot be statically determined");
 
-    int64_t inputZpVal = *maybeIZp;
-    int64_t weightZpVal = *maybeWZp;
+    const int64_t inputZpVal = *maybeIZp;
+    const int64_t weightZpVal = *maybeWZp;
 
     if (op.verifyInputZeroPoint(inputZpVal).failed())
       return rewriter.notifyMatchFailure(
@@ -466,8 +466,8 @@ class DepthwiseConvConverter
       return rewriter.notifyMatchFailure(
           op, "weight zero point cannot be statically determined");
 
-    int64_t inputZpVal = *maybeIZp;
-    int64_t weightZpVal = *maybeWZp;
+    const int64_t inputZpVal = *maybeIZp;
+    const int64_t weightZpVal = *maybeWZp;
 
     if (op.verifyInputZeroPoint(inputZpVal).failed())
       return rewriter.notifyMatchFailure(
@@ -621,15 +621,38 @@ class MatMulConverter : public OpConversionPattern<tosa::MatMulOp> {
                            .create<linalg::FillOp>(loc, ValueRange{zero},
                                                    ValueRange{emptyTensor})
                            .result();
-    if (!op.getAZp() && !op.getBZp()) {
+
+    FailureOr<int64_t> maybeAZp = op.getAZeroPoint();
+    FailureOr<int64_t> maybeBZp = op.getBZeroPoint();
+    if (failed(maybeAZp))
+      return rewriter.notifyMatchFailure(
+          op, "input a zero point cannot be statically determined");
+    if (failed(maybeBZp))
+      return rewriter.notifyMatchFailure(
+          op, "input b zero point cannot be statically determined");
+
+    const int64_t aZpVal = *maybeAZp;
+    const int64_t bZpVal = *maybeBZp;
+
+    if (op.verifyAZeroPoint(aZpVal).failed())
+      return rewriter.notifyMatchFailure(
+          op, "input a zero point must be zero for non-int8 integer types");
+
+    if (op.verifyBZeroPoint(bZpVal).failed())
+      return rewriter.notifyMatchFailure(
+          op, "input b zero point must be zero for non-int8 integer types");
+
+    if (aZpVal == 0 && bZpVal == 0) {
       rewriter.replaceOpWithNewOp<linalg::BatchMatmulOp>(
           op, TypeRange{op.getType()},
           ValueRange{adaptor.getA(), adaptor.getB()}, ValueRange{zeroTensor});
       return success();
     }
 
-    auto aZp = rewriter.create<arith::ConstantOp>(loc, op.getAZpAttr());
-    auto bZp = rewriter.create<arith::ConstantOp>(loc, op.getBZpAttr());
+    auto aZp = rewriter.create<arith::ConstantOp>(
+        loc, rewriter.getI32IntegerAttr(aZpVal));
+    auto bZp = rewriter.create<arith::ConstantOp>(
+        loc, rewriter.getI32IntegerAttr(bZpVal));
     rewriter.replaceOpWithNewOp<linalg::QuantizedBatchMatmulOp>(
         op, TypeRange{op.getType()},
         ValueRange{adaptor.getA(), adaptor.getB(), aZp, bZp}, zeroTensor);
@@ -834,8 +857,8 @@ class AvgPool2dConverter : public OpRewritePattern<tosa::AvgPool2dOp> {
       return rewriter.notifyMatchFailure(
           op, "output zero point could not be statically determined");
 
-    int64_t inputZpVal = *maybeIZp;
-    int64_t outputZpVal = *maybeOZp;
+    const int64_t inputZpVal = *maybeIZp;
+    const int64_t outputZpVal = *maybeOZp;
 
     // Apply padding as necessary.
     llvm::SmallVector<int64_t> pad;
diff --git a/mlir/lib/Dialect/Tosa/IR/ShardingInterfaceImpl.cpp b/mlir/lib/Dialect/Tosa/IR/ShardingInterfaceImpl.cpp
index ffbb707344b8c..6dcb7c845b21f 100644
--- a/mlir/lib/Dialect/Tosa/IR/ShardingInterfaceImpl.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/ShardingInterfaceImpl.cpp
@@ -55,6 +55,8 @@ struct MatMulOpSharding
     SmallVector<AffineMap> maps;
     maps.push_back(AffineMap::getMultiDimMapWithTargets(4, {0, 1, 3}, ctx));
     maps.push_back(AffineMap::getMultiDimMapWithTargets(4, {0, 3, 2}, ctx));
+    maps.push_back(AffineMap::get(0, 0, {}, ctx));
+    maps.push_back(AffineMap::get(0, 0, {}, ctx));
     maps.push_back(AffineMap::getMultiDimMapWithTargets(4, {0, 1, 2}, ctx));
     return maps;
   }
diff --git a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
index 4711122dc76e2..7a991b3876f69 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
@@ -629,23 +629,13 @@ buildTransConvOpWithQuantInfo(OpBuilder &builder, OperationState &result,
 static void buildMatMulOpWithQuantInfo(OpBuilder &builder,
                                        OperationState &result, Type outputType,
                                        Value a, Value b) {
-  result.addOperands({a, b});
-  auto quantAttr = ::buildMatMulOpQuantizationAttr(builder, a, b);
+  auto zps = createZPsAsConst(builder, a, b);
+  result.addOperands({a, b, zps.first, zps.second});
 
-  if (quantAttr) {
-    result.addAttribute("a_zp", builder.getI32IntegerAttr(
-                                    static_cast<int32_t>(quantAttr.getAZp())));
-    result.addAttribute("b_zp", builder.getI32IntegerAttr(
-                                    static_cast<int32_t>(quantAttr.getBZp())));
-
-    auto inputType = llvm::dyn_cast<ShapedType>(a.getType());
-    assert(inputType && "Input must be a shaped tensor type!");
-
-    auto inputQType = llvm::dyn_cast<mlir::quant::UniformQuantizedType>(
-        inputType.getElementType());
-    assert(inputQType && "Tensor must have quantized datatype!");
-
-    unsigned inputBits = inputQType.getStorageTypeIntegralWidth();
+  Type finalOutputType{outputType};
+  if (auto quantAttr = buildMatMulOpQuantizationAttr(builder, a, b)) {
+    auto eType = getStorageElementTypeOrSelf(a.getType());
+    auto inputBits = eType.getIntOrFloatBitWidth();
 
     auto outputShapedType = llvm::dyn_cast<ShapedType>(outputType);
     assert(outputShapedType && "Output must be a shaped type");
@@ -655,11 +645,10 @@ static void buildMatMulOpWithQuantInfo(OpBuilder &builder,
       accElementType = builder.getIntegerType(48);
     else
       accElementType = builder.getI32Type();
-    auto accType = outputShapedType.clone(accElementType);
-    result.addTypes(accType);
-  } else {
-    result.addTypes(outputType);
+
+    finalOutputType = outputShapedType.clone(accElementType);
   }
+  result.addTypes(finalOutputType);
 }
 
 /// Both the tosa.avg_pool2d and unary ops use the same
@@ -1140,16 +1129,39 @@ LogicalResult MatMulOp::verify() {
       return emitOpError("expect quantized operands to have same widths, got ")
              << aQuantWidth << " and " << bQuantWidth;
     }
+  } else {
+    // non-quantized element types
+    if (aElementType != bElementType) {
+      return emitOpError("expect same element type for inputs a and b, got ")
+             << aElementType << " and " << bElementType;
+    }
+  }
 
-    return success();
+  // check a_zp and b_zp
+  auto aEType = getStorageElementTypeOrSelf(aType);
+  auto aZpEType = getStorageElementTypeOrSelf(getAZp().getType());
+  if (aEType != aZpEType) {
+    return emitOpError("expect input a and a_zp have the same "
+                       "element type, got ")
+           << aEType << " and " << aZpEType;
   }
 
-  // non-quantized element types
-  if (aElementType != bElementType) {
-    return emitOpError("expect same element type for inputs a and b, got ")
-           << aElementType << " and " << bElementType;
+  auto bEType = getStorageElementTypeOrSelf(bType);
+  auto bZpEType = getStorageElementTypeOrSelf(getBZp().getType());
+  if (bEType != bZpEType) {
+    return emitOpError("expect input b and b_zp have the same "
+                       "element type, got ")
+           << bEType << " and " << bZpEType;
   }
 
+  FailureOr<int64_t> maybeAZp = getAZeroPoint();
+  if (succeeded(maybeAZp) && verifyAZeroPoint(*maybeAZp).failed())
+    return failure();
+
+  FailureOr<int64_t> maybeBZp = getBZeroPoint();
+  if (succeeded(maybeBZp) && verifyBZeroPoint(*maybeBZp).failed())
+    return failure();
+
   return success();
 }
 
@@ -1714,6 +1726,8 @@ ZERO_POINT_HELPER(TransposeConv2DOp, Input)
 ZERO_POINT_HELPER(TransposeConv2DOp, Weight)
 ZERO_POINT_HELPER(AvgPool2dOp, Input)
 ZERO_POINT_HELPER(AvgPool2dOp, Output)
+ZERO_POINT_HELPER(MatMulOp, A)
+ZERO_POINT_HELPER(MatMulOp, B)
 #undef ZERO_POINT_HELPER
 
 LogicalResult tosa::TransposeOp::inferReturnTypeComponents(
diff --git a/mlir/lib/Dialect/Tosa/Transforms/TosaProfileCompliance.cpp b/mlir/lib/Dialect/Tosa/Transforms/TosaProfileCompliance.cpp
index 345616c9563b5..983062ffd7912 100644
--- a/mlir/lib/Dialect/Tosa/Transforms/TosaProfileCompliance.cpp
+++ b/mlir/lib/Dialect/Tosa/Transforms/TosaProfileCompliance.cpp
@@ -178,6 +178,15 @@ void ProfileInfoDepot::populateProfileInfo(tosa::RescaleOp op) {
   addValue(op.getOutput());
 }
 
+template <>
+void ProfileInfoDepot::populateProfileInfo(tosa::MatMulOp op) {
+  addValue(op.getA());
+  addValue(op.getB());
+  addValue(op.getAZp());
+  addValue(op.getBZp());
+  addValue(op.getOutput());
+}
+
 LogicalResult ProfileInfoDepot::populatationDispatch(Operation *op) {
 // This helper function only populates the info for the customised operands.
 #define POPULATE_PROFILE_INFO_CUSTOM(tosaOp)                                   \
@@ -218,6 +227,7 @@ LogicalResult ProfileInfoDepot::populatationDispatch(Operation *op) {
   POPULATE_PROFILE_INFO_CUSTOM(Resize)
   POPULATE_PROFILE_INFO_CUSTOM(Select)
   POPULATE_PROFILE_INFO_CUSTOM(Rescale)
+  POPULATE_PROFILE_INFO_CUSTOM(MatMul)
 
   // Type Invariant Extension, a capability extension that is independent
   // of the data type, meaning any compatible type can be used. No type
@@ -235,7 +245,6 @@ LogicalResult ProfileInfoDepot::populatationDispatch(Operation *op) {
   POPULATE_PROFILE_INFO_COMMON(Cast)
   POPULATE_PROFILE_INFO_COMMON(Const)
   POPULATE_PROFILE_INFO_COMMON(ArgMax)
-  POPULATE_PROFILE_INFO_COMMON(MatMul)
   POPULATE_PROFILE_INFO_COMMON(Sub)
   POPULATE_PROFILE_INFO_COMMON(Maximum)
   POPULATE_PROFILE_INFO_COMMON(Minimum)
diff --git a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
index 5bb4a3bddb51b..341f773c79a5e 100644
--- a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
+++ b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
@@ -8,7 +8,9 @@ func.func @matmul(%arg0: tensor<1x5x3xf32>, %arg1: tensor<1x3x6xf32>) -> (tensor
   // CHECK: [[INIT:%.+]] = tensor.empty()
   // CHECK: [[FILLED:%.+]] = linalg.fill ins([[C0]] : f32) outs([[INIT]] : tensor<1x5x6xf32>) -> tensor<1x5x6xf32>
   // CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<1x5x3xf32>, tensor<1x3x6xf32>) outs([[FILLED]] : tensor<1x5x6xf32>) -> tensor<1x5x6xf32>
-  %0 = tosa.matmul %arg0, %arg1 : (tensor<1x5x3xf32>, tensor<1x3x6xf32>)  -> tensor<1x5x6xf32>
+  %a_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+  %b_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+  %0 = tosa.matmul %arg0, %arg1, %a_zp, %b_zp : (tensor<1x5x3xf32>, tensor<1x3x6xf32>, tensor<1xf32>, tensor<1xf32>)  -> tensor<1x5x6xf32>
   return %0 : tensor<1x5x6xf32>
 }
 
@@ -23,7 +25,9 @@ func.func @matmul_quantized(%arg0: tensor<1x5x3xi8>, %arg1: tensor<1x3x6xi8>) ->
   // CHECK: [[ONE:%.+]] = arith.constant 1
   // CHECK: [[TWO:%.+]] = arith.constant 2
   // CHECK: linalg.quantized_batch_matmul ins(%arg0, %arg1, [[ONE]], [[TWO]] : tensor<1x5x3xi8>, tensor<1x3x6xi8>, i32, i32) outs([[FILLED]] : tensor<1x5x6xi32>) -> tensor<1x5x6xi32>
-  %0 = tosa.matmul %arg0, %arg1 {a_zp = 1 : i32, b_zp = 2 : i32} : (tensor<1x5x3xi8>, tensor<1x3x6xi8>) -> tensor<1x5x6xi32>
+  %a_zp = "tosa.const"() <{values = dense<1> : tensor<1xi8>}> : () -> tensor<1xi8>
+  %b_zp = "tosa.const"() <{values = dense<2> : tensor<1xi8>}> : () -> tensor<1xi8>
+  %0 = tosa.matmul %arg0, %arg1, %a_zp, %b_zp : (tensor<1x5x3xi8>, tensor<1x3x6xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x5x6xi32>
   return %0 : tensor<1x5x6xi32>
 }
 
@@ -37,7 +41,9 @@ func.func @matmul_dyn_batch(%arg0: tensor<?x5x3xf32>, %arg1: tensor<?x3x6xf32>)
   // CHECK: %[[INIT:.+]] = tensor.empty(%[[DIM]])
   // CHECK: %[[FILLED:.+]] = linalg.fill ins(%[[C0_0]] : f32) outs(%[[INIT]] : tensor<?x5x6xf32>) -> tensor<?x5x6xf32>
   // CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<?x5x3xf32>, tensor<?x3x6xf32>) outs(%[[FILLED]] : tensor<?x5x6xf32>) -> tensor<?x5x6xf32>
-  %0 = tosa.matmul %arg0, %arg1 : (tensor<?x5x3xf32>, tensor<?x3x6xf32>) -> tensor<?x5x6xf32>
+  %a_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+  %b_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+  %0 = tosa.matmul %arg0, %arg1, %a_zp, %b_zp : (tensor<?x5x3xf32>, tensor<?x3x6xf32>, tensor<1xf32>, tensor<1xf32>)  -> tensor<?x5x6xf32>
   return %0 : tensor<?x5x6xf32>
 }
 
@@ -51,7 +57,9 @@ func.func @matmul_dyn_independent_dim(%arg0: tensor<1x5x3xf32>, %arg1: tensor<1x
   // CHECK: %[[INIT:.+]] = tensor.empty(%[[DIM]])
   // CHECK: %[[FILLED:.+]] = linalg.fill ins(%[[C0]] : f32) outs(%[[INIT]] : tensor<1x5x?xf32>) -> tensor<1x5x?xf32>
   // CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<1x5x3xf32>, tensor<1x3x?xf32>) outs(%[[FILLED]] : tensor<1x5x?xf32>) -> tensor<1x5x?xf32>
-  %0 = tosa.matmul %arg0, %arg1 : (tensor<1x5x3xf32>, tensor<1x3x?xf32>) -> tensor<1x5x?xf32>
+  %a_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+  %b_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+  %0 = tosa.matmul %arg0, %arg1, %a_zp, %b_zp : (tensor<1x5x3xf32>, tensor<1x3x?xf32>, tensor<1xf32>, tensor<1xf32>)  -> tensor<1x5x?xf32>
   return %0 : tensor<1x5x?xf32>
 }
 
@@ -63,7 +71,9 @@ func.func @matmul_dyn_independent_dim(%arg0: tensor<1x5x?xf32>, %arg1: tensor<1x
   // CHECK: %[[INIT:.+]] = tensor.empty()
   // CHECK: %[[FILLED:.+]] = linalg.fill ins(%[[C0]] : f32) outs(%[[INIT]] : tensor<1x5x6xf32>) -> tensor<1x5x6xf32>
   // CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<1x5x?xf32>, tensor<1x?x6xf32>) outs(%[[FILLED]] : tensor<1x5x6xf32>) -> tensor<1x5x6xf32>
-  %0 = tosa.matmul %arg0, %arg1 : (tensor<1x5x?xf32>, tensor<1x?x6xf32>) -> tensor<1x5x6xf32>
+  %a_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+  %b_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+  %0 = tosa.matmul %arg0, %arg1, %a_zp, %b_zp : (tensor<1x5x?xf32>, tensor<1x?x6xf32>, tensor<1xf32>, tensor<1xf32>)  -> tensor<1x5x6xf32>
   return %0 : tensor<1x5x6xf32>
 }
 
@@ -77,7 +87,9 @@ func.func @matmul_dyn_output(%arg0: tensor<1x1x8xf32>, %arg1: tensor<1x8x1xf32>)
   // CHECK: %[[INIT:.+]] = tensor.empty(%[[DIM0]]) : tensor<?x1x1xf32>
   // CHECK: %[[FILLED:.+]] = linalg.fill ins(%[[CST]] : f32) outs(%[[INIT]] : tensor<?x1x1xf32>) -> tensor<?x1x1xf32>
   // CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<1x1x8xf32>, tensor<1x8x1xf32>) outs(%[[FILLED]] : tensor<?x1x1xf32>) -> tensor<?x1x1xf32>
-  %0 = tosa.matmul %arg0, %arg1 : (tensor<1x1x8xf32>, tensor<1x8x1xf32>) -> tensor<?x1x1xf32>
+  %a_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+  %b_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+  %0 = tosa.matmul %arg0, %arg1, %a_zp, %b_zp : (tensor<1x1x8xf32>, tensor<1x8x1xf32>, tensor<1xf32>, tensor<1xf32>)  -> tensor<?x1x1xf32>
   return %0 : tensor<?x1x1xf32>
 }
 
diff --git a/mlir/test/Dialect/Mesh/sharding-propagation.mlir b/mlir/test/Dialect/Mesh/sharding-propagation.mlir
index 83136f613b020..14c67e670e921 100644
--- a/mlir/test/Dialect/Mesh/sharding-propagation.mlir
+++ b/mlir/test/Dialect/Mesh/sharding-propagation.mlir
@@ -98,14 +98,16 @@ func.func @arrow_structure(%arg0: tensor<8x16xf32>) -> (tensor<8x16xf32>, tensor
 }
 
 // CHECK-LABEL: func.func @matmul_on_def_shard_batch_and_m
-// CHECK-SAME:     %[[ARG0:.*]]: tensor<2x16x8xf32>, %[[ARG1:.*]]: tensor<2x8x32xf32>
-func.func @matmul_on_def_shard_batch_and_m(%arg0: tensor<2x16x8xf32>, %arg1: tensor<2x8x32xf32>) -> tensor<2x16x32xf32> {
+// CHECK-SAME:     %[[ARG0:.*]]: tensor<2x16x8xf32>, %[[ARG1:.*]]: tensor<2x8x32xf32>, %[[ARG2:.*]]: tensor<1xf32>
+func.func @matmul_on_def_shard_batch_and_m(%arg0: tensor<2x16x8xf32>, %arg1: tensor<2x8x32xf32>, %arg2: tensor<1xf32>) -> tensor<2x16x32xf32> {
   // CHECK-NEXT:  %[[S0:.*]] = mesh.sharding @mesh_2d split_axes = {{\[\[}}0], [1]] : !mesh.sharding
   // CHECK-NEXT:  %[[V0:.*]] = mesh.shard %[[ARG0]] to %[[S0]] annotate_for_users  : tensor<2x16x8xf32>
   // CHECK-NEXT:  %[[S1:.*]] = mesh.sharding @mesh_2d split_axes = {{\[\[}}0]] : !mesh.sharding
   // CHECK-NEXT:  %[[V1:.*]] = mesh.shard %[[ARG1]] to %[[S1]] annotate_for_users  : tensor<2x8x32xf32>
-  // CHECK-NEXT:  %[[V2:.*]] = tosa.matmul %[[V0]], %[[V1]]
-  %0 = tosa.matmul %arg0, %arg1 : (tensor<2x16x8xf32>, tensor<2x8x32xf32>) -> tensor<2x16x32xf32>
+  // CHECK-NEXT:  %[[S2:.*]] = mesh.sharding @mesh_2d split_axes = {{\[\[}}]] : !mesh.sharding
+  // CHECK-NEXT:  %[[ZP:.*]] = mesh.shard %[[ARG2]] to %[[S2]] annotate_for_users  : tensor<1xf32>
+  // CHECK-NEXT:  %[[V2:.*]] = tosa.matmul %[[V0]], %[[V1]], %[[ZP]], %[[ZP]]
+  %0 = tosa.matmul %arg0, %arg1, %arg2, %arg2 : (tensor<2x16x8xf32>, tensor<2x8x32xf32>, tensor<1xf32>, tensor<1xf32>)  -> tensor<2x16x32xf32>
   // CHECK-NEXT:  %[[S3:.*]] = mesh.sharding @mesh_2d split_axes = {{\[\[}}0], [1]] : !mesh.sharding
   // CHECK-NEXT:  %[[V3:.*]] = mesh.shard %[[V2]] to %[[S3]]  :...
[truncated]

@llvmbot
Copy link
Member

llvmbot commented Mar 7, 2025

@llvm/pr-subscribers-mlir-tosa

Author: Tai Ly (Tai78641)

Changes
  • Change zero-point attributes to inputs
  • Fix relevant mlir tests
  • Enhance ShardingInterface in MatMul

Patch is 47.21 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/130332.diff

15 Files Affected:

  • (modified) mlir/include/mlir/Dialect/Tosa/IR/TosaComplianceData.h.inc (+8-6)
  • (modified) mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td (+9-2)
  • (modified) mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp (+32-9)
  • (modified) mlir/lib/Dialect/Tosa/IR/ShardingInterfaceImpl.cpp (+2)
  • (modified) mlir/lib/Dialect/Tosa/IR/TosaOps.cpp (+39-25)
  • (modified) mlir/lib/Dialect/Tosa/Transforms/TosaProfileCompliance.cpp (+10-1)
  • (modified) mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir (+18-6)
  • (modified) mlir/test/Dialect/Mesh/sharding-propagation.mlir (+39-27)
  • (modified) mlir/test/Dialect/Tosa/availability.mlir (+2-2)
  • (modified) mlir/test/Dialect/Tosa/invalid.mlir (+41-1)
  • (modified) mlir/test/Dialect/Tosa/level_check.mlir (+2-1)
  • (modified) mlir/test/Dialect/Tosa/ops.mlir (+9-3)
  • (modified) mlir/test/Dialect/Tosa/profile_all_unsupported.mlir (+2-2)
  • (modified) mlir/test/Dialect/Tosa/profile_pro_fp_unsupported.mlir (+2-2)
  • (modified) mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir (+23-13)
diff --git a/mlir/include/mlir/Dialect/Tosa/IR/TosaComplianceData.h.inc b/mlir/include/mlir/Dialect/Tosa/IR/TosaComplianceData.h.inc
index a9b458acd87f2..d3fd4c3d1d3e1 100644
--- a/mlir/include/mlir/Dialect/Tosa/IR/TosaComplianceData.h.inc
+++ b/mlir/include/mlir/Dialect/Tosa/IR/TosaComplianceData.h.inc
@@ -35,9 +35,11 @@ profileComplianceMap = {
         {fp16T, fp16T, fp32T, fp32T},
         {fp32T, fp32T, fp32T, fp32T}}}}},
     {"tosa.matmul",
-     {{{Profile::pro_int}, {{i8T, i8T, i32T}}},
+     {{{Profile::pro_int}, {{i8T, i8T, i8T, i8T, i32T}}},
       {{Profile::pro_fp},
-       {{fp16T, fp16T, fp16T}, {fp16T, fp16T, fp32T}, {fp32T, fp32T, fp32T}}}}},
+       {{fp16T, fp16T, fp16T, fp16T, fp16T},
+        {fp16T, fp16T, fp16T, fp16T, fp32T},
+        {fp32T, fp32T, fp32T, fp32T, fp32T}}}}},
     {"tosa.max_pool2d",
      {{{Profile::pro_int}, {{i8T, i8T}}},
       {{Profile::pro_fp}, {{fp16T, fp16T}, {fp32T, fp32T}}}}},
@@ -273,10 +275,10 @@ extensionComplianceMap = {
       {{Extension::int16}, {{i16T, i8T, i48T, i48T}}},
       {{Extension::bf16}, {{bf16T, bf16T, fp32T, fp32T}}}}},
     {"tosa.matmul",
-     {{{Extension::int16}, {{i16T, i16T, i48T}}},
-      {{Extension::fp8e4m3}, {{fp8e4m3T, fp8e4m3T, fp16T}}},
-      {{Extension::fp8e5m2}, {{fp8e5m2T, fp8e5m2T, fp16T}}},
-      {{Extension::bf16}, {{bf16T, bf16T, fp32T}}}}},
+     {{{Extension::int16}, {{i16T, i16T, i16T, i16T, i48T}}},
+      {{Extension::fp8e4m3}, {{fp8e4m3T, fp8e4m3T, fp8e4m3T, fp8e4m3T, fp16T}}},
+      {{Extension::fp8e5m2}, {{fp8e5m2T, fp8e5m2T, fp8e5m2T, fp8e5m2T, fp16T}}},
+      {{Extension::bf16}, {{bf16T, bf16T, bf16T, bf16T, fp32T}}}}},
     {"tosa.max_pool2d",
      {{{Extension::int16}, {{i16T, i16T}}},
       {{Extension::fp8e4m3}, {{fp8e4m3T, fp8e4m3T}}},
diff --git a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
index 097f78cd487ea..ecddc9fe9a13d 100644
--- a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
+++ b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
@@ -311,8 +311,8 @@ def Tosa_MatMulOp : Tosa_InferShapedTypeOp<"matmul"> {
   let arguments = (ins
     Tosa_Tensor3D:$a,
     Tosa_Tensor3D:$b,
-    OptionalAttr<I32Attr>:$a_zp,
-    OptionalAttr<I32Attr>:$b_zp
+    Tosa_ScalarIntOrFloatTensor:$a_zp,
+    Tosa_ScalarIntOrFloatTensor:$b_zp
   );
 
   let results = (outs
@@ -324,6 +324,13 @@ def Tosa_MatMulOp : Tosa_InferShapedTypeOp<"matmul"> {
     Extension<[Tosa_EXT_INT16, Tosa_EXT_FP8E4M3, Tosa_EXT_FP8E5M2, Tosa_EXT_BF16]>,
   ];
 
+  let extraClassDeclaration = [{
+    FailureOr<int64_t> getAZeroPoint();
+    FailureOr<int64_t> getBZeroPoint();
+    LogicalResult verifyAZeroPoint(int64_t zp);
+    LogicalResult verifyBZeroPoint(int64_t zp);
+  }];
+
   let builders = [Tosa_MatMulOpQuantInfoBuilder];
   let hasVerifier = 1;
 }
diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
index 2a2589e19d0ac..13c62b2d3e91c 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
@@ -270,8 +270,8 @@ class ConvConverter : public OpConversionPattern<TosaConvOp> {
       return rewriter.notifyMatchFailure(
           op, "weight zero point cannot be statically determined");
 
-    int64_t inputZpVal = *maybeIZp;
-    int64_t weightZpVal = *maybeWZp;
+    const int64_t inputZpVal = *maybeIZp;
+    const int64_t weightZpVal = *maybeWZp;
 
     if (op.verifyInputZeroPoint(inputZpVal).failed())
       return rewriter.notifyMatchFailure(
@@ -466,8 +466,8 @@ class DepthwiseConvConverter
       return rewriter.notifyMatchFailure(
           op, "weight zero point cannot be statically determined");
 
-    int64_t inputZpVal = *maybeIZp;
-    int64_t weightZpVal = *maybeWZp;
+    const int64_t inputZpVal = *maybeIZp;
+    const int64_t weightZpVal = *maybeWZp;
 
     if (op.verifyInputZeroPoint(inputZpVal).failed())
       return rewriter.notifyMatchFailure(
@@ -621,15 +621,38 @@ class MatMulConverter : public OpConversionPattern<tosa::MatMulOp> {
                            .create<linalg::FillOp>(loc, ValueRange{zero},
                                                    ValueRange{emptyTensor})
                            .result();
-    if (!op.getAZp() && !op.getBZp()) {
+
+    FailureOr<int64_t> maybeAZp = op.getAZeroPoint();
+    FailureOr<int64_t> maybeBZp = op.getBZeroPoint();
+    if (failed(maybeAZp))
+      return rewriter.notifyMatchFailure(
+          op, "input a zero point cannot be statically determined");
+    if (failed(maybeBZp))
+      return rewriter.notifyMatchFailure(
+          op, "input b zero point cannot be statically determined");
+
+    const int64_t aZpVal = *maybeAZp;
+    const int64_t bZpVal = *maybeBZp;
+
+    if (op.verifyAZeroPoint(aZpVal).failed())
+      return rewriter.notifyMatchFailure(
+          op, "input a zero point must be zero for non-int8 integer types");
+
+    if (op.verifyBZeroPoint(bZpVal).failed())
+      return rewriter.notifyMatchFailure(
+          op, "input b zero point must be zero for non-int8 integer types");
+
+    if (aZpVal == 0 && bZpVal == 0) {
       rewriter.replaceOpWithNewOp<linalg::BatchMatmulOp>(
           op, TypeRange{op.getType()},
           ValueRange{adaptor.getA(), adaptor.getB()}, ValueRange{zeroTensor});
       return success();
     }
 
-    auto aZp = rewriter.create<arith::ConstantOp>(loc, op.getAZpAttr());
-    auto bZp = rewriter.create<arith::ConstantOp>(loc, op.getBZpAttr());
+    auto aZp = rewriter.create<arith::ConstantOp>(
+        loc, rewriter.getI32IntegerAttr(aZpVal));
+    auto bZp = rewriter.create<arith::ConstantOp>(
+        loc, rewriter.getI32IntegerAttr(bZpVal));
     rewriter.replaceOpWithNewOp<linalg::QuantizedBatchMatmulOp>(
         op, TypeRange{op.getType()},
         ValueRange{adaptor.getA(), adaptor.getB(), aZp, bZp}, zeroTensor);
@@ -834,8 +857,8 @@ class AvgPool2dConverter : public OpRewritePattern<tosa::AvgPool2dOp> {
       return rewriter.notifyMatchFailure(
           op, "output zero point could not be statically determined");
 
-    int64_t inputZpVal = *maybeIZp;
-    int64_t outputZpVal = *maybeOZp;
+    const int64_t inputZpVal = *maybeIZp;
+    const int64_t outputZpVal = *maybeOZp;
 
     // Apply padding as necessary.
     llvm::SmallVector<int64_t> pad;
diff --git a/mlir/lib/Dialect/Tosa/IR/ShardingInterfaceImpl.cpp b/mlir/lib/Dialect/Tosa/IR/ShardingInterfaceImpl.cpp
index ffbb707344b8c..6dcb7c845b21f 100644
--- a/mlir/lib/Dialect/Tosa/IR/ShardingInterfaceImpl.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/ShardingInterfaceImpl.cpp
@@ -55,6 +55,8 @@ struct MatMulOpSharding
     SmallVector<AffineMap> maps;
     maps.push_back(AffineMap::getMultiDimMapWithTargets(4, {0, 1, 3}, ctx));
     maps.push_back(AffineMap::getMultiDimMapWithTargets(4, {0, 3, 2}, ctx));
+    maps.push_back(AffineMap::get(0, 0, {}, ctx));
+    maps.push_back(AffineMap::get(0, 0, {}, ctx));
     maps.push_back(AffineMap::getMultiDimMapWithTargets(4, {0, 1, 2}, ctx));
     return maps;
   }
diff --git a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
index 4711122dc76e2..7a991b3876f69 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
@@ -629,23 +629,13 @@ buildTransConvOpWithQuantInfo(OpBuilder &builder, OperationState &result,
 static void buildMatMulOpWithQuantInfo(OpBuilder &builder,
                                        OperationState &result, Type outputType,
                                        Value a, Value b) {
-  result.addOperands({a, b});
-  auto quantAttr = ::buildMatMulOpQuantizationAttr(builder, a, b);
+  auto zps = createZPsAsConst(builder, a, b);
+  result.addOperands({a, b, zps.first, zps.second});
 
-  if (quantAttr) {
-    result.addAttribute("a_zp", builder.getI32IntegerAttr(
-                                    static_cast<int32_t>(quantAttr.getAZp())));
-    result.addAttribute("b_zp", builder.getI32IntegerAttr(
-                                    static_cast<int32_t>(quantAttr.getBZp())));
-
-    auto inputType = llvm::dyn_cast<ShapedType>(a.getType());
-    assert(inputType && "Input must be a shaped tensor type!");
-
-    auto inputQType = llvm::dyn_cast<mlir::quant::UniformQuantizedType>(
-        inputType.getElementType());
-    assert(inputQType && "Tensor must have quantized datatype!");
-
-    unsigned inputBits = inputQType.getStorageTypeIntegralWidth();
+  Type finalOutputType{outputType};
+  if (auto quantAttr = buildMatMulOpQuantizationAttr(builder, a, b)) {
+    auto eType = getStorageElementTypeOrSelf(a.getType());
+    auto inputBits = eType.getIntOrFloatBitWidth();
 
     auto outputShapedType = llvm::dyn_cast<ShapedType>(outputType);
     assert(outputShapedType && "Output must be a shaped type");
@@ -655,11 +645,10 @@ static void buildMatMulOpWithQuantInfo(OpBuilder &builder,
       accElementType = builder.getIntegerType(48);
     else
       accElementType = builder.getI32Type();
-    auto accType = outputShapedType.clone(accElementType);
-    result.addTypes(accType);
-  } else {
-    result.addTypes(outputType);
+
+    finalOutputType = outputShapedType.clone(accElementType);
   }
+  result.addTypes(finalOutputType);
 }
 
 /// Both the tosa.avg_pool2d and unary ops use the same
@@ -1140,16 +1129,39 @@ LogicalResult MatMulOp::verify() {
       return emitOpError("expect quantized operands to have same widths, got ")
              << aQuantWidth << " and " << bQuantWidth;
     }
+  } else {
+    // non-quantized element types
+    if (aElementType != bElementType) {
+      return emitOpError("expect same element type for inputs a and b, got ")
+             << aElementType << " and " << bElementType;
+    }
+  }
 
-    return success();
+  // check a_zp and b_zp
+  auto aEType = getStorageElementTypeOrSelf(aType);
+  auto aZpEType = getStorageElementTypeOrSelf(getAZp().getType());
+  if (aEType != aZpEType) {
+    return emitOpError("expect input a and a_zp have the same "
+                       "element type, got ")
+           << aEType << " and " << aZpEType;
   }
 
-  // non-quantized element types
-  if (aElementType != bElementType) {
-    return emitOpError("expect same element type for inputs a and b, got ")
-           << aElementType << " and " << bElementType;
+  auto bEType = getStorageElementTypeOrSelf(bType);
+  auto bZpEType = getStorageElementTypeOrSelf(getBZp().getType());
+  if (bEType != bZpEType) {
+    return emitOpError("expect input b and b_zp have the same "
+                       "element type, got ")
+           << bEType << " and " << bZpEType;
   }
 
+  FailureOr<int64_t> maybeAZp = getAZeroPoint();
+  if (succeeded(maybeAZp) && verifyAZeroPoint(*maybeAZp).failed())
+    return failure();
+
+  FailureOr<int64_t> maybeBZp = getBZeroPoint();
+  if (succeeded(maybeBZp) && verifyBZeroPoint(*maybeBZp).failed())
+    return failure();
+
   return success();
 }
 
@@ -1714,6 +1726,8 @@ ZERO_POINT_HELPER(TransposeConv2DOp, Input)
 ZERO_POINT_HELPER(TransposeConv2DOp, Weight)
 ZERO_POINT_HELPER(AvgPool2dOp, Input)
 ZERO_POINT_HELPER(AvgPool2dOp, Output)
+ZERO_POINT_HELPER(MatMulOp, A)
+ZERO_POINT_HELPER(MatMulOp, B)
 #undef ZERO_POINT_HELPER
 
 LogicalResult tosa::TransposeOp::inferReturnTypeComponents(
diff --git a/mlir/lib/Dialect/Tosa/Transforms/TosaProfileCompliance.cpp b/mlir/lib/Dialect/Tosa/Transforms/TosaProfileCompliance.cpp
index 345616c9563b5..983062ffd7912 100644
--- a/mlir/lib/Dialect/Tosa/Transforms/TosaProfileCompliance.cpp
+++ b/mlir/lib/Dialect/Tosa/Transforms/TosaProfileCompliance.cpp
@@ -178,6 +178,15 @@ void ProfileInfoDepot::populateProfileInfo(tosa::RescaleOp op) {
   addValue(op.getOutput());
 }
 
+template <>
+void ProfileInfoDepot::populateProfileInfo(tosa::MatMulOp op) {
+  addValue(op.getA());
+  addValue(op.getB());
+  addValue(op.getAZp());
+  addValue(op.getBZp());
+  addValue(op.getOutput());
+}
+
 LogicalResult ProfileInfoDepot::populatationDispatch(Operation *op) {
 // This helper function only populates the info for the customised operands.
 #define POPULATE_PROFILE_INFO_CUSTOM(tosaOp)                                   \
@@ -218,6 +227,7 @@ LogicalResult ProfileInfoDepot::populatationDispatch(Operation *op) {
   POPULATE_PROFILE_INFO_CUSTOM(Resize)
   POPULATE_PROFILE_INFO_CUSTOM(Select)
   POPULATE_PROFILE_INFO_CUSTOM(Rescale)
+  POPULATE_PROFILE_INFO_CUSTOM(MatMul)
 
   // Type Invariant Extension, a capability extension that is independent
   // of the data type, meaning any compatible type can be used. No type
@@ -235,7 +245,6 @@ LogicalResult ProfileInfoDepot::populatationDispatch(Operation *op) {
   POPULATE_PROFILE_INFO_COMMON(Cast)
   POPULATE_PROFILE_INFO_COMMON(Const)
   POPULATE_PROFILE_INFO_COMMON(ArgMax)
-  POPULATE_PROFILE_INFO_COMMON(MatMul)
   POPULATE_PROFILE_INFO_COMMON(Sub)
   POPULATE_PROFILE_INFO_COMMON(Maximum)
   POPULATE_PROFILE_INFO_COMMON(Minimum)
diff --git a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
index 5bb4a3bddb51b..341f773c79a5e 100644
--- a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
+++ b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
@@ -8,7 +8,9 @@ func.func @matmul(%arg0: tensor<1x5x3xf32>, %arg1: tensor<1x3x6xf32>) -> (tensor
   // CHECK: [[INIT:%.+]] = tensor.empty()
   // CHECK: [[FILLED:%.+]] = linalg.fill ins([[C0]] : f32) outs([[INIT]] : tensor<1x5x6xf32>) -> tensor<1x5x6xf32>
   // CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<1x5x3xf32>, tensor<1x3x6xf32>) outs([[FILLED]] : tensor<1x5x6xf32>) -> tensor<1x5x6xf32>
-  %0 = tosa.matmul %arg0, %arg1 : (tensor<1x5x3xf32>, tensor<1x3x6xf32>)  -> tensor<1x5x6xf32>
+  %a_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+  %b_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+  %0 = tosa.matmul %arg0, %arg1, %a_zp, %b_zp : (tensor<1x5x3xf32>, tensor<1x3x6xf32>, tensor<1xf32>, tensor<1xf32>)  -> tensor<1x5x6xf32>
   return %0 : tensor<1x5x6xf32>
 }
 
@@ -23,7 +25,9 @@ func.func @matmul_quantized(%arg0: tensor<1x5x3xi8>, %arg1: tensor<1x3x6xi8>) ->
   // CHECK: [[ONE:%.+]] = arith.constant 1
   // CHECK: [[TWO:%.+]] = arith.constant 2
   // CHECK: linalg.quantized_batch_matmul ins(%arg0, %arg1, [[ONE]], [[TWO]] : tensor<1x5x3xi8>, tensor<1x3x6xi8>, i32, i32) outs([[FILLED]] : tensor<1x5x6xi32>) -> tensor<1x5x6xi32>
-  %0 = tosa.matmul %arg0, %arg1 {a_zp = 1 : i32, b_zp = 2 : i32} : (tensor<1x5x3xi8>, tensor<1x3x6xi8>) -> tensor<1x5x6xi32>
+  %a_zp = "tosa.const"() <{values = dense<1> : tensor<1xi8>}> : () -> tensor<1xi8>
+  %b_zp = "tosa.const"() <{values = dense<2> : tensor<1xi8>}> : () -> tensor<1xi8>
+  %0 = tosa.matmul %arg0, %arg1, %a_zp, %b_zp : (tensor<1x5x3xi8>, tensor<1x3x6xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x5x6xi32>
   return %0 : tensor<1x5x6xi32>
 }
 
@@ -37,7 +41,9 @@ func.func @matmul_dyn_batch(%arg0: tensor<?x5x3xf32>, %arg1: tensor<?x3x6xf32>)
   // CHECK: %[[INIT:.+]] = tensor.empty(%[[DIM]])
   // CHECK: %[[FILLED:.+]] = linalg.fill ins(%[[C0_0]] : f32) outs(%[[INIT]] : tensor<?x5x6xf32>) -> tensor<?x5x6xf32>
   // CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<?x5x3xf32>, tensor<?x3x6xf32>) outs(%[[FILLED]] : tensor<?x5x6xf32>) -> tensor<?x5x6xf32>
-  %0 = tosa.matmul %arg0, %arg1 : (tensor<?x5x3xf32>, tensor<?x3x6xf32>) -> tensor<?x5x6xf32>
+  %a_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+  %b_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+  %0 = tosa.matmul %arg0, %arg1, %a_zp, %b_zp : (tensor<?x5x3xf32>, tensor<?x3x6xf32>, tensor<1xf32>, tensor<1xf32>)  -> tensor<?x5x6xf32>
   return %0 : tensor<?x5x6xf32>
 }
 
@@ -51,7 +57,9 @@ func.func @matmul_dyn_independent_dim(%arg0: tensor<1x5x3xf32>, %arg1: tensor<1x
   // CHECK: %[[INIT:.+]] = tensor.empty(%[[DIM]])
   // CHECK: %[[FILLED:.+]] = linalg.fill ins(%[[C0]] : f32) outs(%[[INIT]] : tensor<1x5x?xf32>) -> tensor<1x5x?xf32>
   // CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<1x5x3xf32>, tensor<1x3x?xf32>) outs(%[[FILLED]] : tensor<1x5x?xf32>) -> tensor<1x5x?xf32>
-  %0 = tosa.matmul %arg0, %arg1 : (tensor<1x5x3xf32>, tensor<1x3x?xf32>) -> tensor<1x5x?xf32>
+  %a_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+  %b_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+  %0 = tosa.matmul %arg0, %arg1, %a_zp, %b_zp : (tensor<1x5x3xf32>, tensor<1x3x?xf32>, tensor<1xf32>, tensor<1xf32>)  -> tensor<1x5x?xf32>
   return %0 : tensor<1x5x?xf32>
 }
 
@@ -63,7 +71,9 @@ func.func @matmul_dyn_independent_dim(%arg0: tensor<1x5x?xf32>, %arg1: tensor<1x
   // CHECK: %[[INIT:.+]] = tensor.empty()
   // CHECK: %[[FILLED:.+]] = linalg.fill ins(%[[C0]] : f32) outs(%[[INIT]] : tensor<1x5x6xf32>) -> tensor<1x5x6xf32>
   // CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<1x5x?xf32>, tensor<1x?x6xf32>) outs(%[[FILLED]] : tensor<1x5x6xf32>) -> tensor<1x5x6xf32>
-  %0 = tosa.matmul %arg0, %arg1 : (tensor<1x5x?xf32>, tensor<1x?x6xf32>) -> tensor<1x5x6xf32>
+  %a_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+  %b_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+  %0 = tosa.matmul %arg0, %arg1, %a_zp, %b_zp : (tensor<1x5x?xf32>, tensor<1x?x6xf32>, tensor<1xf32>, tensor<1xf32>)  -> tensor<1x5x6xf32>
   return %0 : tensor<1x5x6xf32>
 }
 
@@ -77,7 +87,9 @@ func.func @matmul_dyn_output(%arg0: tensor<1x1x8xf32>, %arg1: tensor<1x8x1xf32>)
   // CHECK: %[[INIT:.+]] = tensor.empty(%[[DIM0]]) : tensor<?x1x1xf32>
   // CHECK: %[[FILLED:.+]] = linalg.fill ins(%[[CST]] : f32) outs(%[[INIT]] : tensor<?x1x1xf32>) -> tensor<?x1x1xf32>
   // CHECK: linalg.batch_matmul ins(%arg0, %arg1 : tensor<1x1x8xf32>, tensor<1x8x1xf32>) outs(%[[FILLED]] : tensor<?x1x1xf32>) -> tensor<?x1x1xf32>
-  %0 = tosa.matmul %arg0, %arg1 : (tensor<1x1x8xf32>, tensor<1x8x1xf32>) -> tensor<?x1x1xf32>
+  %a_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+  %b_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
+  %0 = tosa.matmul %arg0, %arg1, %a_zp, %b_zp : (tensor<1x1x8xf32>, tensor<1x8x1xf32>, tensor<1xf32>, tensor<1xf32>)  -> tensor<?x1x1xf32>
   return %0 : tensor<?x1x1xf32>
 }
 
diff --git a/mlir/test/Dialect/Mesh/sharding-propagation.mlir b/mlir/test/Dialect/Mesh/sharding-propagation.mlir
index 83136f613b020..14c67e670e921 100644
--- a/mlir/test/Dialect/Mesh/sharding-propagation.mlir
+++ b/mlir/test/Dialect/Mesh/sharding-propagation.mlir
@@ -98,14 +98,16 @@ func.func @arrow_structure(%arg0: tensor<8x16xf32>) -> (tensor<8x16xf32>, tensor
 }
 
 // CHECK-LABEL: func.func @matmul_on_def_shard_batch_and_m
-// CHECK-SAME:     %[[ARG0:.*]]: tensor<2x16x8xf32>, %[[ARG1:.*]]: tensor<2x8x32xf32>
-func.func @matmul_on_def_shard_batch_and_m(%arg0: tensor<2x16x8xf32>, %arg1: tensor<2x8x32xf32>) -> tensor<2x16x32xf32> {
+// CHECK-SAME:     %[[ARG0:.*]]: tensor<2x16x8xf32>, %[[ARG1:.*]]: tensor<2x8x32xf32>, %[[ARG2:.*]]: tensor<1xf32>
+func.func @matmul_on_def_shard_batch_and_m(%arg0: tensor<2x16x8xf32>, %arg1: tensor<2x8x32xf32>, %arg2: tensor<1xf32>) -> tensor<2x16x32xf32> {
   // CHECK-NEXT:  %[[S0:.*]] = mesh.sharding @mesh_2d split_axes = {{\[\[}}0], [1]] : !mesh.sharding
   // CHECK-NEXT:  %[[V0:.*]] = mesh.shard %[[ARG0]] to %[[S0]] annotate_for_users  : tensor<2x16x8xf32>
   // CHECK-NEXT:  %[[S1:.*]] = mesh.sharding @mesh_2d split_axes = {{\[\[}}0]] : !mesh.sharding
   // CHECK-NEXT:  %[[V1:.*]] = mesh.shard %[[ARG1]] to %[[S1]] annotate_for_users  : tensor<2x8x32xf32>
-  // CHECK-NEXT:  %[[V2:.*]] = tosa.matmul %[[V0]], %[[V1]]
-  %0 = tosa.matmul %arg0, %arg1 : (tensor<2x16x8xf32>, tensor<2x8x32xf32>) -> tensor<2x16x32xf32>
+  // CHECK-NEXT:  %[[S2:.*]] = mesh.sharding @mesh_2d split_axes = {{\[\[}}]] : !mesh.sharding
+  // CHECK-NEXT:  %[[ZP:.*]] = mesh.shard %[[ARG2]] to %[[S2]] annotate_for_users  : tensor<1xf32>
+  // CHECK-NEXT:  %[[V2:.*]] = tosa.matmul %[[V0]], %[[V1]], %[[ZP]], %[[ZP]]
+  %0 = tosa.matmul %arg0, %arg1, %arg2, %arg2 : (tensor<2x16x8xf32>, tensor<2x8x32xf32>, tensor<1xf32>, tensor<1xf32>)  -> tensor<2x16x32xf32>
   // CHECK-NEXT:  %[[S3:.*]] = mesh.sharding @mesh_2d split_axes = {{\[\[}}0], [1]] : !mesh.sharding
   // CHECK-NEXT:  %[[V3:.*]] = mesh.shard %[[V2]] to %[[S3]]  :...
[truncated]

@Jerry-Ge
Copy link
Member

Jerry-Ge commented Mar 7, 2025

This PR is rebased from this original PR: #129785

@Jerry-Ge Jerry-Ge self-requested a review March 7, 2025 19:35
Copy link
Member

@Jerry-Ge Jerry-Ge left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Approved. Minor rebase on top of the original PR (#129785)

@Jerry-Ge Jerry-Ge merged commit dfbadfc into llvm:main Mar 7, 2025
15 checks passed
jph-13 pushed a commit to jph-13/llvm-project that referenced this pull request Mar 21, 2025
* Change zero-point attributes to inputs
* Fix relevant mlir tests
* Enhance ShardingInterface in MatMul

Signed-off-by: Udaya Ranga <[email protected]>
Co-authored-by: Udaya Ranga <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants