-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[mlir][sparse] stress test BSR #72712
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
I always enjoy a good stress test. This end-to-end integration test ensures the major ordering of both the block and within the block are correctly handled (giving row-row, row-col, col-row and col-row as options).
@llvm/pr-subscribers-mlir-sparse @llvm/pr-subscribers-mlir Author: Aart Bik (aartbik) ChangesI always enjoy a good stress test. This end-to-end integration test ensures the major ordering of both the block and within the block are correctly handled (giving row-row, row-col, col-row and col-row as options). Full diff: https://github.com/llvm/llvm-project/pull/72712.diff 1 Files Affected:
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/block_majors.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/block_majors.mlir
new file mode 100755
index 000000000000000..7a83bfc7ec0ab0d
--- /dev/null
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/block_majors.mlir
@@ -0,0 +1,174 @@
+//--------------------------------------------------------------------------------------------------
+// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
+//
+// Set-up that's shared across all tests in this directory. In principle, this
+// config could be moved to lit.local.cfg. However, there are downstream users that
+// do not use these LIT config files. Hence why this is kept inline.
+//
+// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
+// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
+// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
+// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
+// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
+// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
+// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
+//
+// DEFINE: %{env} =
+//--------------------------------------------------------------------------------------------------
+
+// RUN: %{compile} | %{run} | FileCheck %s
+//
+// Do the same run, but now with direct IR generation.
+// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
+// RUN: %{compile} | %{run} | FileCheck %s
+//
+// Do the same run, but now with direct IR generation and vectorization.
+// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
+// RUN: %{compile} | %{run} | FileCheck %s
+
+#BSR_row_rowmajor = #sparse_tensor.encoding<{
+ map = (i, j) ->
+ ( i floordiv 3 : dense
+ , j floordiv 4 : compressed
+ , i mod 3 : dense
+ , j mod 4 : dense
+ )
+}>
+
+#BSR_row_colmajor = #sparse_tensor.encoding<{
+ map = (i, j) ->
+ ( i floordiv 3 : dense
+ , j floordiv 4 : compressed
+ , j mod 4 : dense
+ , i mod 3 : dense
+ )
+}>
+
+#BSR_col_rowmajor = #sparse_tensor.encoding<{
+ map = (i, j) ->
+ ( j floordiv 4 : dense
+ , i floordiv 3 : compressed
+ , i mod 3 : dense
+ , j mod 4 : dense
+ )
+}>
+
+#BSR_col_colmajor = #sparse_tensor.encoding<{
+ map = (i, j) ->
+ ( j floordiv 4 : dense
+ , i floordiv 3 : compressed
+ , j mod 4 : dense
+ , i mod 3 : dense
+ )
+}>
+
+//
+// Example 3x4 block storage of a 6x16 matrix:
+//
+// +---------+---------+---------+---------+
+// | 1 2 . . | . . . . | . . . . | . . . . |
+// | . . . . | . . . . | . . . . | . . . . |
+// | . . . 3 | . . . . | . . . . | . . . . |
+// +---------+---------+---------+---------+
+// | . . . . | . . . . | 4 5 . . | . . . . |
+// | . . . . | . . . . | . . . . | . . . . |
+// | . . . . | . . . . | . . 6 7 | . . . . |
+// +---------+---------+---------+---------+
+//
+// Stored for row "2x4-blocked"
+//
+// positions[1] : 0 1 2
+// coordinates[1] : 0 2
+// values : 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,
+// 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7 [row]
+//
+// 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3,
+// 4, 0, 0, 5, 0, 0, 0, 0, 6, 0, 0, 7 [col]
+//
+// or for column "4x2-blocked"
+//
+// positions[1] : 0 1 1 2 2
+// coordinates[1] : 0 1
+// values : 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,
+// 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7 [row]
+//
+// 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3,
+// 4, 0, 0, 5, 0, 0, 0, 0, 6, 0, 0, 7 [col]
+//
+module {
+
+ func.func @main() {
+ %c0 = arith.constant 0 : index
+ %f0 = arith.constant 0.0 : f64
+
+ %m = arith.constant sparse<
+ [ [0, 0], [0, 1], [2, 3], [3, 8], [3, 9], [5, 10], [5, 11] ],
+ [ 1., 2., 3., 4., 5., 6., 7.]
+ > : tensor<6x16xf64>
+ %s1 = sparse_tensor.convert %m : tensor<6x16xf64> to tensor<?x?xf64, #BSR_row_rowmajor>
+ %s2 = sparse_tensor.convert %m : tensor<6x16xf64> to tensor<?x?xf64, #BSR_row_colmajor>
+ %s3 = sparse_tensor.convert %m : tensor<6x16xf64> to tensor<?x?xf64, #BSR_col_rowmajor>
+ %s4 = sparse_tensor.convert %m : tensor<6x16xf64> to tensor<?x?xf64, #BSR_col_colmajor>
+
+ // CHECK: ( 0, 1, 2 )
+ // CHECK-NEXT: ( 0, 2 )
+ // CHECK-NEXT: ( 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7 )
+ %pos1 = sparse_tensor.positions %s1 {level = 1 : index } : tensor<?x?xf64, #BSR_row_rowmajor> to memref<?xindex>
+ %vecp1 = vector.transfer_read %pos1[%c0], %c0 : memref<?xindex>, vector<3xindex>
+ vector.print %vecp1 : vector<3xindex>
+ %crd1 = sparse_tensor.coordinates %s1 {level = 1 : index } : tensor<?x?xf64, #BSR_row_rowmajor> to memref<?xindex>
+ %vecc1 = vector.transfer_read %crd1[%c0], %c0 : memref<?xindex>, vector<2xindex>
+ vector.print %vecc1 : vector<2xindex>
+ %val1 = sparse_tensor.values %s1 : tensor<?x?xf64, #BSR_row_rowmajor> to memref<?xf64>
+ %vecv1 = vector.transfer_read %val1[%c0], %f0 : memref<?xf64>, vector<24xf64>
+ vector.print %vecv1 : vector<24xf64>
+
+ // CHECK-NEXT: ( 0, 1, 2 )
+ // CHECK-NEXT: ( 0, 2 )
+ // CHECK-NEXT: ( 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 5, 0, 0, 0, 0, 6, 0, 0, 7 )
+ %pos2 = sparse_tensor.positions %s2 {level = 1 : index } : tensor<?x?xf64, #BSR_row_colmajor> to memref<?xindex>
+ %vecp2 = vector.transfer_read %pos2[%c0], %c0 : memref<?xindex>, vector<3xindex>
+ vector.print %vecp2 : vector<3xindex>
+ %crd2 = sparse_tensor.coordinates %s2 {level = 1 : index } : tensor<?x?xf64, #BSR_row_colmajor> to memref<?xindex>
+ %vecc2 = vector.transfer_read %crd2[%c0], %c0 : memref<?xindex>, vector<2xindex>
+ vector.print %vecc2 : vector<2xindex>
+ %val2 = sparse_tensor.values %s2 : tensor<?x?xf64, #BSR_row_colmajor> to memref<?xf64>
+ %vecv2 = vector.transfer_read %val2[%c0], %f0 : memref<?xf64>, vector<24xf64>
+ vector.print %vecv2 : vector<24xf64>
+
+ // CHECK-NEXT: ( 0, 1, 1, 2, 2 )
+ // CHECK-NEXT: ( 0, 1 )
+ // CHECK-NEXT: ( 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7 )
+ %pos3 = sparse_tensor.positions %s3 {level = 1 : index } : tensor<?x?xf64, #BSR_col_rowmajor> to memref<?xindex>
+ %vecp3 = vector.transfer_read %pos3[%c0], %c0 : memref<?xindex>, vector<5xindex>
+ vector.print %vecp3 : vector<5xindex>
+ %crd3 = sparse_tensor.coordinates %s3 {level = 1 : index } : tensor<?x?xf64, #BSR_col_rowmajor> to memref<?xindex>
+ %vecc3 = vector.transfer_read %crd3[%c0], %c0 : memref<?xindex>, vector<2xindex>
+ vector.print %vecc3 : vector<2xindex>
+ %val3 = sparse_tensor.values %s3 : tensor<?x?xf64, #BSR_col_rowmajor> to memref<?xf64>
+ %vecv3 = vector.transfer_read %val3[%c0], %f0 : memref<?xf64>, vector<24xf64>
+ vector.print %vecv3 : vector<24xf64>
+
+ // CHECK-NEXT: ( 0, 1, 1, 2, 2 )
+ // CHECK-NEXT: ( 0, 1 )
+ // CHECK-NEXT: ( 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 5, 0, 0, 0, 0, 6, 0, 0, 7 )
+ %pos4 = sparse_tensor.positions %s4 {level = 1 : index } : tensor<?x?xf64, #BSR_col_colmajor> to memref<?xindex>
+ %vecp4 = vector.transfer_read %pos4[%c0], %c0 : memref<?xindex>, vector<5xindex>
+ vector.print %vecp4 : vector<5xindex>
+ %crd4 = sparse_tensor.coordinates %s4 {level = 1 : index } : tensor<?x?xf64, #BSR_col_colmajor> to memref<?xindex>
+ %vecc4 = vector.transfer_read %crd4[%c0], %c0 : memref<?xindex>, vector<2xindex>
+ vector.print %vecc4 : vector<2xindex>
+ %val4 = sparse_tensor.values %s4 : tensor<?x?xf64, #BSR_col_colmajor> to memref<?xf64>
+ %vecv4 = vector.transfer_read %val4[%c0], %f0 : memref<?xf64>, vector<24xf64>
+ vector.print %vecv4 : vector<24xf64>
+
+ // Release the resources.
+ bufferization.dealloc_tensor %s1: tensor<?x?xf64, #BSR_row_rowmajor>
+ bufferization.dealloc_tensor %s2: tensor<?x?xf64, #BSR_row_colmajor>
+ bufferization.dealloc_tensor %s3: tensor<?x?xf64, #BSR_col_rowmajor>
+ bufferization.dealloc_tensor %s4: tensor<?x?xf64, #BSR_col_colmajor>
+
+ return
+ }
+}
|
mlir/test/Integration/Dialect/SparseTensor/CPU/block_majors.mlir
Outdated
Show resolved
Hide resolved
How long is this test supposed to take? Right now the bots are broken consistently with timeouts: https://lab.llvm.org/buildbot/#/builders/264 Also you seem to be merging with an invalid email because of your GitHub settings, so you're likely missing on the notifications. |
This reverts commit 813aaf3.
Reverts #72712 This causes timeouts on the bots.
These tests should run really fast with just a few elements (the "stress" really referred to trying out all four BSR formats, not really "stressing" the system ;-). But thanks for reverting if it is really because of this, I will check again the runtimes. Also, for my education, what settings do I have wrong on github causing an invalid email? |
I always enjoy a good stress test. This end-to-end integration test ensures the major ordering of both the block and within the block are correctly handled (giving row-row, row-col, col-row and col-row as options).
Reverts llvm#72712 This causes timeouts on the bots.
I always enjoy a good stress test. This end-to-end integration test ensures the major ordering of both the block and within the block are correctly handled (giving row-row, row-col, col-row and col-row as options).
Reverts llvm#72712 This causes timeouts on the bots.
Note, this is a redo of #72712 which was reverted due to time outs in the bot. I have timed the tests on various settings, and it does not even hit the top 20 of integration tests. To be safe, I removed the SIMD version of the tests, just keeping libgen/direcIR paths (which are the most important to test for us). I will also keep an eye on https://lab.llvm.org/buildbot/#/builders/264/builds after submitting to make sure there is no repeat.
I always enjoy a good stress test. This end-to-end integration test ensures the major ordering of both the block and within the block are correctly handled (giving row-row, row-col, col-row and col-row as options).