-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[mlir][sparse] test four row/col major versions of BSR #72898
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
@llvm/pr-subscribers-mlir Author: Aart Bik (aartbik) ChangesNote, this is a redo of #72712 which was reverted due to time outs in the bot. I have timed the tests on various settings, and it does not even hit the top 20 of integration tests. To be safe, I removed the SIMD version of the tests, just keeping libgen/direcIR paths (which are the most important to test for us). I will also keep an eye on https://lab.llvm.org/buildbot/#/builders/264/builds after submitting to make sure there is no repeat. Full diff: https://github.com/llvm/llvm-project/pull/72898.diff 1 Files Affected:
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/block_majors.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/block_majors.mlir
new file mode 100755
index 000000000000000..780c1e8b3f64a7a
--- /dev/null
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/block_majors.mlir
@@ -0,0 +1,174 @@
+//--------------------------------------------------------------------------------------------------
+// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
+//
+// Set-up that's shared across all tests in this directory. In principle, this
+// config could be moved to lit.local.cfg. However, there are downstream users that
+// do not use these LIT config files. Hence why this is kept inline.
+//
+// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
+// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
+// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
+// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
+// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
+// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
+// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
+//
+// DEFINE: %{env} =
+//--------------------------------------------------------------------------------------------------
+
+// RUN: %{compile} | %{run} | FileCheck %s
+//
+// Do the same run, but now with direct IR generation.
+// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
+// RUN: %{compile} | %{run} | FileCheck %s
+
+#BSR_row_rowmajor = #sparse_tensor.encoding<{
+ map = (i, j) ->
+ ( i floordiv 3 : dense
+ , j floordiv 4 : compressed
+ , i mod 3 : dense
+ , j mod 4 : dense
+ )
+}>
+
+#BSR_row_colmajor = #sparse_tensor.encoding<{
+ map = (i, j) ->
+ ( i floordiv 3 : dense
+ , j floordiv 4 : compressed
+ , j mod 4 : dense
+ , i mod 3 : dense
+ )
+}>
+
+#BSR_col_rowmajor = #sparse_tensor.encoding<{
+ map = (i, j) ->
+ ( j floordiv 4 : dense
+ , i floordiv 3 : compressed
+ , i mod 3 : dense
+ , j mod 4 : dense
+ )
+}>
+
+#BSR_col_colmajor = #sparse_tensor.encoding<{
+ map = (i, j) ->
+ ( j floordiv 4 : dense
+ , i floordiv 3 : compressed
+ , j mod 4 : dense
+ , i mod 3 : dense
+ )
+}>
+
+//
+// Example 3x4 block storage of a 6x16 matrix:
+//
+// +---------+---------+---------+---------+
+// | 1 2 . . | . . . . | . . . . | . . . . |
+// | . . . . | . . . . | . . . . | . . . . |
+// | . . . 3 | . . . . | . . . . | . . . . |
+// +---------+---------+---------+---------+
+// | . . . . | . . . . | 4 5 . . | . . . . |
+// | . . . . | . . . . | . . . . | . . . . |
+// | . . . . | . . . . | . . 6 7 | . . . . |
+// +---------+---------+---------+---------+
+//
+// Storage for CSR block storage. Note that this essentially
+// provides CSR storage of 2x4 blocks with either row-major
+// or column-major storage within each 3x4 block of elements.
+//
+// positions[1] : 0 1 2
+// coordinates[1] : 0 2
+// values : 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,
+// 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7 [row-major]
+//
+// 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3,
+// 4, 0, 0, 5, 0, 0, 0, 0, 6, 0, 0, 7 [col-major]
+//
+// Storage for CSC block storage. Note that this essentially
+// provides CSC storage of 4x2 blocks with either row-major
+// or column-major storage within each 3x4 block of elements.
+//
+// positions[1] : 0 1 1 2 2
+// coordinates[1] : 0 1
+// values : 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,
+// 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7 [row-major]
+//
+// 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3,
+// 4, 0, 0, 5, 0, 0, 0, 0, 6, 0, 0, 7 [col-major]
+//
+module {
+
+ func.func @main() {
+ %c0 = arith.constant 0 : index
+ %f0 = arith.constant 0.0 : f64
+
+ %m = arith.constant sparse<
+ [ [0, 0], [0, 1], [2, 3], [3, 8], [3, 9], [5, 10], [5, 11] ],
+ [ 1., 2., 3., 4., 5., 6., 7.]
+ > : tensor<6x16xf64>
+ %s1 = sparse_tensor.convert %m : tensor<6x16xf64> to tensor<?x?xf64, #BSR_row_rowmajor>
+ %s2 = sparse_tensor.convert %m : tensor<6x16xf64> to tensor<?x?xf64, #BSR_row_colmajor>
+ %s3 = sparse_tensor.convert %m : tensor<6x16xf64> to tensor<?x?xf64, #BSR_col_rowmajor>
+ %s4 = sparse_tensor.convert %m : tensor<6x16xf64> to tensor<?x?xf64, #BSR_col_colmajor>
+
+ // CHECK: ( 0, 1, 2 )
+ // CHECK-NEXT: ( 0, 2 )
+ // CHECK-NEXT: ( 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7 )
+ %pos1 = sparse_tensor.positions %s1 {level = 1 : index } : tensor<?x?xf64, #BSR_row_rowmajor> to memref<?xindex>
+ %vecp1 = vector.transfer_read %pos1[%c0], %c0 : memref<?xindex>, vector<3xindex>
+ vector.print %vecp1 : vector<3xindex>
+ %crd1 = sparse_tensor.coordinates %s1 {level = 1 : index } : tensor<?x?xf64, #BSR_row_rowmajor> to memref<?xindex>
+ %vecc1 = vector.transfer_read %crd1[%c0], %c0 : memref<?xindex>, vector<2xindex>
+ vector.print %vecc1 : vector<2xindex>
+ %val1 = sparse_tensor.values %s1 : tensor<?x?xf64, #BSR_row_rowmajor> to memref<?xf64>
+ %vecv1 = vector.transfer_read %val1[%c0], %f0 : memref<?xf64>, vector<24xf64>
+ vector.print %vecv1 : vector<24xf64>
+
+ // CHECK-NEXT: ( 0, 1, 2 )
+ // CHECK-NEXT: ( 0, 2 )
+ // CHECK-NEXT: ( 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 5, 0, 0, 0, 0, 6, 0, 0, 7 )
+ %pos2 = sparse_tensor.positions %s2 {level = 1 : index } : tensor<?x?xf64, #BSR_row_colmajor> to memref<?xindex>
+ %vecp2 = vector.transfer_read %pos2[%c0], %c0 : memref<?xindex>, vector<3xindex>
+ vector.print %vecp2 : vector<3xindex>
+ %crd2 = sparse_tensor.coordinates %s2 {level = 1 : index } : tensor<?x?xf64, #BSR_row_colmajor> to memref<?xindex>
+ %vecc2 = vector.transfer_read %crd2[%c0], %c0 : memref<?xindex>, vector<2xindex>
+ vector.print %vecc2 : vector<2xindex>
+ %val2 = sparse_tensor.values %s2 : tensor<?x?xf64, #BSR_row_colmajor> to memref<?xf64>
+ %vecv2 = vector.transfer_read %val2[%c0], %f0 : memref<?xf64>, vector<24xf64>
+ vector.print %vecv2 : vector<24xf64>
+
+ // CHECK-NEXT: ( 0, 1, 1, 2, 2 )
+ // CHECK-NEXT: ( 0, 1 )
+ // CHECK-NEXT: ( 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7 )
+ %pos3 = sparse_tensor.positions %s3 {level = 1 : index } : tensor<?x?xf64, #BSR_col_rowmajor> to memref<?xindex>
+ %vecp3 = vector.transfer_read %pos3[%c0], %c0 : memref<?xindex>, vector<5xindex>
+ vector.print %vecp3 : vector<5xindex>
+ %crd3 = sparse_tensor.coordinates %s3 {level = 1 : index } : tensor<?x?xf64, #BSR_col_rowmajor> to memref<?xindex>
+ %vecc3 = vector.transfer_read %crd3[%c0], %c0 : memref<?xindex>, vector<2xindex>
+ vector.print %vecc3 : vector<2xindex>
+ %val3 = sparse_tensor.values %s3 : tensor<?x?xf64, #BSR_col_rowmajor> to memref<?xf64>
+ %vecv3 = vector.transfer_read %val3[%c0], %f0 : memref<?xf64>, vector<24xf64>
+ vector.print %vecv3 : vector<24xf64>
+
+ // CHECK-NEXT: ( 0, 1, 1, 2, 2 )
+ // CHECK-NEXT: ( 0, 1 )
+ // CHECK-NEXT: ( 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 5, 0, 0, 0, 0, 6, 0, 0, 7 )
+ %pos4 = sparse_tensor.positions %s4 {level = 1 : index } : tensor<?x?xf64, #BSR_col_colmajor> to memref<?xindex>
+ %vecp4 = vector.transfer_read %pos4[%c0], %c0 : memref<?xindex>, vector<5xindex>
+ vector.print %vecp4 : vector<5xindex>
+ %crd4 = sparse_tensor.coordinates %s4 {level = 1 : index } : tensor<?x?xf64, #BSR_col_colmajor> to memref<?xindex>
+ %vecc4 = vector.transfer_read %crd4[%c0], %c0 : memref<?xindex>, vector<2xindex>
+ vector.print %vecc4 : vector<2xindex>
+ %val4 = sparse_tensor.values %s4 : tensor<?x?xf64, #BSR_col_colmajor> to memref<?xf64>
+ %vecv4 = vector.transfer_read %val4[%c0], %f0 : memref<?xf64>, vector<24xf64>
+ vector.print %vecv4 : vector<24xf64>
+
+ // Release the resources.
+ bufferization.dealloc_tensor %s1: tensor<?x?xf64, #BSR_row_rowmajor>
+ bufferization.dealloc_tensor %s2: tensor<?x?xf64, #BSR_row_colmajor>
+ bufferization.dealloc_tensor %s3: tensor<?x?xf64, #BSR_col_rowmajor>
+ bufferization.dealloc_tensor %s4: tensor<?x?xf64, #BSR_col_colmajor>
+
+ return
+ }
+}
|
@llvm/pr-subscribers-mlir-sparse Author: Aart Bik (aartbik) ChangesNote, this is a redo of #72712 which was reverted due to time outs in the bot. I have timed the tests on various settings, and it does not even hit the top 20 of integration tests. To be safe, I removed the SIMD version of the tests, just keeping libgen/direcIR paths (which are the most important to test for us). I will also keep an eye on https://lab.llvm.org/buildbot/#/builders/264/builds after submitting to make sure there is no repeat. Full diff: https://github.com/llvm/llvm-project/pull/72898.diff 1 Files Affected:
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/block_majors.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/block_majors.mlir
new file mode 100755
index 000000000000000..780c1e8b3f64a7a
--- /dev/null
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/block_majors.mlir
@@ -0,0 +1,174 @@
+//--------------------------------------------------------------------------------------------------
+// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
+//
+// Set-up that's shared across all tests in this directory. In principle, this
+// config could be moved to lit.local.cfg. However, there are downstream users that
+// do not use these LIT config files. Hence why this is kept inline.
+//
+// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
+// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
+// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
+// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
+// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
+// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
+// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
+//
+// DEFINE: %{env} =
+//--------------------------------------------------------------------------------------------------
+
+// RUN: %{compile} | %{run} | FileCheck %s
+//
+// Do the same run, but now with direct IR generation.
+// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
+// RUN: %{compile} | %{run} | FileCheck %s
+
+#BSR_row_rowmajor = #sparse_tensor.encoding<{
+ map = (i, j) ->
+ ( i floordiv 3 : dense
+ , j floordiv 4 : compressed
+ , i mod 3 : dense
+ , j mod 4 : dense
+ )
+}>
+
+#BSR_row_colmajor = #sparse_tensor.encoding<{
+ map = (i, j) ->
+ ( i floordiv 3 : dense
+ , j floordiv 4 : compressed
+ , j mod 4 : dense
+ , i mod 3 : dense
+ )
+}>
+
+#BSR_col_rowmajor = #sparse_tensor.encoding<{
+ map = (i, j) ->
+ ( j floordiv 4 : dense
+ , i floordiv 3 : compressed
+ , i mod 3 : dense
+ , j mod 4 : dense
+ )
+}>
+
+#BSR_col_colmajor = #sparse_tensor.encoding<{
+ map = (i, j) ->
+ ( j floordiv 4 : dense
+ , i floordiv 3 : compressed
+ , j mod 4 : dense
+ , i mod 3 : dense
+ )
+}>
+
+//
+// Example 3x4 block storage of a 6x16 matrix:
+//
+// +---------+---------+---------+---------+
+// | 1 2 . . | . . . . | . . . . | . . . . |
+// | . . . . | . . . . | . . . . | . . . . |
+// | . . . 3 | . . . . | . . . . | . . . . |
+// +---------+---------+---------+---------+
+// | . . . . | . . . . | 4 5 . . | . . . . |
+// | . . . . | . . . . | . . . . | . . . . |
+// | . . . . | . . . . | . . 6 7 | . . . . |
+// +---------+---------+---------+---------+
+//
+// Storage for CSR block storage. Note that this essentially
+// provides CSR storage of 2x4 blocks with either row-major
+// or column-major storage within each 3x4 block of elements.
+//
+// positions[1] : 0 1 2
+// coordinates[1] : 0 2
+// values : 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,
+// 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7 [row-major]
+//
+// 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3,
+// 4, 0, 0, 5, 0, 0, 0, 0, 6, 0, 0, 7 [col-major]
+//
+// Storage for CSC block storage. Note that this essentially
+// provides CSC storage of 4x2 blocks with either row-major
+// or column-major storage within each 3x4 block of elements.
+//
+// positions[1] : 0 1 1 2 2
+// coordinates[1] : 0 1
+// values : 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,
+// 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7 [row-major]
+//
+// 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3,
+// 4, 0, 0, 5, 0, 0, 0, 0, 6, 0, 0, 7 [col-major]
+//
+module {
+
+ func.func @main() {
+ %c0 = arith.constant 0 : index
+ %f0 = arith.constant 0.0 : f64
+
+ %m = arith.constant sparse<
+ [ [0, 0], [0, 1], [2, 3], [3, 8], [3, 9], [5, 10], [5, 11] ],
+ [ 1., 2., 3., 4., 5., 6., 7.]
+ > : tensor<6x16xf64>
+ %s1 = sparse_tensor.convert %m : tensor<6x16xf64> to tensor<?x?xf64, #BSR_row_rowmajor>
+ %s2 = sparse_tensor.convert %m : tensor<6x16xf64> to tensor<?x?xf64, #BSR_row_colmajor>
+ %s3 = sparse_tensor.convert %m : tensor<6x16xf64> to tensor<?x?xf64, #BSR_col_rowmajor>
+ %s4 = sparse_tensor.convert %m : tensor<6x16xf64> to tensor<?x?xf64, #BSR_col_colmajor>
+
+ // CHECK: ( 0, 1, 2 )
+ // CHECK-NEXT: ( 0, 2 )
+ // CHECK-NEXT: ( 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7 )
+ %pos1 = sparse_tensor.positions %s1 {level = 1 : index } : tensor<?x?xf64, #BSR_row_rowmajor> to memref<?xindex>
+ %vecp1 = vector.transfer_read %pos1[%c0], %c0 : memref<?xindex>, vector<3xindex>
+ vector.print %vecp1 : vector<3xindex>
+ %crd1 = sparse_tensor.coordinates %s1 {level = 1 : index } : tensor<?x?xf64, #BSR_row_rowmajor> to memref<?xindex>
+ %vecc1 = vector.transfer_read %crd1[%c0], %c0 : memref<?xindex>, vector<2xindex>
+ vector.print %vecc1 : vector<2xindex>
+ %val1 = sparse_tensor.values %s1 : tensor<?x?xf64, #BSR_row_rowmajor> to memref<?xf64>
+ %vecv1 = vector.transfer_read %val1[%c0], %f0 : memref<?xf64>, vector<24xf64>
+ vector.print %vecv1 : vector<24xf64>
+
+ // CHECK-NEXT: ( 0, 1, 2 )
+ // CHECK-NEXT: ( 0, 2 )
+ // CHECK-NEXT: ( 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 5, 0, 0, 0, 0, 6, 0, 0, 7 )
+ %pos2 = sparse_tensor.positions %s2 {level = 1 : index } : tensor<?x?xf64, #BSR_row_colmajor> to memref<?xindex>
+ %vecp2 = vector.transfer_read %pos2[%c0], %c0 : memref<?xindex>, vector<3xindex>
+ vector.print %vecp2 : vector<3xindex>
+ %crd2 = sparse_tensor.coordinates %s2 {level = 1 : index } : tensor<?x?xf64, #BSR_row_colmajor> to memref<?xindex>
+ %vecc2 = vector.transfer_read %crd2[%c0], %c0 : memref<?xindex>, vector<2xindex>
+ vector.print %vecc2 : vector<2xindex>
+ %val2 = sparse_tensor.values %s2 : tensor<?x?xf64, #BSR_row_colmajor> to memref<?xf64>
+ %vecv2 = vector.transfer_read %val2[%c0], %f0 : memref<?xf64>, vector<24xf64>
+ vector.print %vecv2 : vector<24xf64>
+
+ // CHECK-NEXT: ( 0, 1, 1, 2, 2 )
+ // CHECK-NEXT: ( 0, 1 )
+ // CHECK-NEXT: ( 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7 )
+ %pos3 = sparse_tensor.positions %s3 {level = 1 : index } : tensor<?x?xf64, #BSR_col_rowmajor> to memref<?xindex>
+ %vecp3 = vector.transfer_read %pos3[%c0], %c0 : memref<?xindex>, vector<5xindex>
+ vector.print %vecp3 : vector<5xindex>
+ %crd3 = sparse_tensor.coordinates %s3 {level = 1 : index } : tensor<?x?xf64, #BSR_col_rowmajor> to memref<?xindex>
+ %vecc3 = vector.transfer_read %crd3[%c0], %c0 : memref<?xindex>, vector<2xindex>
+ vector.print %vecc3 : vector<2xindex>
+ %val3 = sparse_tensor.values %s3 : tensor<?x?xf64, #BSR_col_rowmajor> to memref<?xf64>
+ %vecv3 = vector.transfer_read %val3[%c0], %f0 : memref<?xf64>, vector<24xf64>
+ vector.print %vecv3 : vector<24xf64>
+
+ // CHECK-NEXT: ( 0, 1, 1, 2, 2 )
+ // CHECK-NEXT: ( 0, 1 )
+ // CHECK-NEXT: ( 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 5, 0, 0, 0, 0, 6, 0, 0, 7 )
+ %pos4 = sparse_tensor.positions %s4 {level = 1 : index } : tensor<?x?xf64, #BSR_col_colmajor> to memref<?xindex>
+ %vecp4 = vector.transfer_read %pos4[%c0], %c0 : memref<?xindex>, vector<5xindex>
+ vector.print %vecp4 : vector<5xindex>
+ %crd4 = sparse_tensor.coordinates %s4 {level = 1 : index } : tensor<?x?xf64, #BSR_col_colmajor> to memref<?xindex>
+ %vecc4 = vector.transfer_read %crd4[%c0], %c0 : memref<?xindex>, vector<2xindex>
+ vector.print %vecc4 : vector<2xindex>
+ %val4 = sparse_tensor.values %s4 : tensor<?x?xf64, #BSR_col_colmajor> to memref<?xf64>
+ %vecv4 = vector.transfer_read %val4[%c0], %f0 : memref<?xf64>, vector<24xf64>
+ vector.print %vecv4 : vector<24xf64>
+
+ // Release the resources.
+ bufferization.dealloc_tensor %s1: tensor<?x?xf64, #BSR_row_rowmajor>
+ bufferization.dealloc_tensor %s2: tensor<?x?xf64, #BSR_row_colmajor>
+ bufferization.dealloc_tensor %s3: tensor<?x?xf64, #BSR_col_rowmajor>
+ bufferization.dealloc_tensor %s4: tensor<?x?xf64, #BSR_col_colmajor>
+
+ return
+ }
+}
|
Just to play it super safe, broke the test up into foo1,2,3,4 to make sure we are not hitting some IR size issues. |
Submitted... keeping an eye on https://lab.llvm.org/buildbot/#/builders/264 |
Looks like we are in good shape \o/ |
And all bots are happy with this change: |
Note, this is a redo of #72712 which was reverted due to time outs in the bot. I have timed the tests on various settings, and it does not even hit the top 20 of integration tests. To be safe, I removed the SIMD version of the tests, just keeping libgen/direcIR paths (which are the most important to test for us).
I will also keep an eye on https://lab.llvm.org/buildbot/#/builders/264/builds after submitting to make sure there is no repeat.