-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[mlir][sparse] migration to sparse_tensor.print #83923
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Closed
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Continuing the efforts started in llvm#83357
@llvm/pr-subscribers-mlir @llvm/pr-subscribers-mlir-sparse Author: Aart Bik (aartbik) ChangesContinuing the efforts started in #83357 Full diff: https://github.com/llvm/llvm-project/pull/83923.diff 7 Files Affected:
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/block_majors.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/block_majors.mlir
old mode 100755
new mode 100644
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_abs.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_abs.mlir
index 3c10e2662f868a..4228bcdb1c0d70 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_abs.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_abs.mlir
@@ -10,7 +10,7 @@
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
-// DEFINE: %{run_opts} = -e entry -entry-point-result=void
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
//
@@ -73,7 +73,7 @@ module {
}
// Driver method to call and verify sign kernel.
- func.func @entry() {
+ func.func @main() {
%c0 = arith.constant 0 : index
%df = arith.constant 99.99 : f64
%di = arith.constant 9999 : i32
@@ -116,21 +116,26 @@ module {
//
// Verify the results.
//
- // CHECK: 12
- // CHECK-NEXT: ( 1.5, 1.5, 10.2, 11.3, 1, 1, nan, nan, inf, inf, 0, 0 )
- // CHECK-NEXT: 9
- // CHECK-NEXT: ( -2147483648, 2147483647, 1000, 1, 0, 1, 1000, 2147483646, 2147483647 )
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 12
+ // CHECK-NEXT: dim = ( 32 )
+ // CHECK-NEXT: lvl = ( 32 )
+ // CHECK-NEXT: pos[0] : ( 0, 12,
+ // CHECK-NEXT: crd[0] : ( 0, 3, 5, 11, 13, 17, 18, 20, 21, 28, 29, 31,
+ // CHECK-NEXT: values : ( 1.5, 1.5, 10.2, 11.3, 1, 1, nan, nan, inf, inf, 0, 0,
+ // CHECK-NEXT: ----
//
- %x = sparse_tensor.values %0 : tensor<?xf64, #SparseVector> to memref<?xf64>
- %y = sparse_tensor.values %1 : tensor<?xi32, #SparseVector> to memref<?xi32>
- %a = vector.transfer_read %x[%c0], %df: memref<?xf64>, vector<12xf64>
- %b = vector.transfer_read %y[%c0], %di: memref<?xi32>, vector<9xi32>
- %na = sparse_tensor.number_of_entries %0 : tensor<?xf64, #SparseVector>
- %nb = sparse_tensor.number_of_entries %1 : tensor<?xi32, #SparseVector>
- vector.print %na : index
- vector.print %a : vector<12xf64>
- vector.print %nb : index
- vector.print %b : vector<9xi32>
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 9
+ // CHECK-NEXT: dim = ( 32 )
+ // CHECK-NEXT: lvl = ( 32 )
+ // CHECK-NEXT: pos[0] : ( 0, 9,
+ // CHECK-NEXT: crd[0] : ( 0, 3, 5, 11, 13, 17, 18, 21, 31,
+ // CHECK-NEXT: values : ( -2147483648, 2147483647, 1000, 1, 0, 1, 1000, 2147483646, 2147483647,
+ // CHECK-NEXT: ----
+ //
+ sparse_tensor.print %0 : tensor<?xf64, #SparseVector>
+ sparse_tensor.print %1 : tensor<?xi32, #SparseVector>
// Release the resources.
bufferization.dealloc_tensor %sv1 : tensor<?xf64, #SparseVector>
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_binary.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_binary.mlir
index 59ecbfdef85043..36701b4385a2a8 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_binary.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_binary.mlir
@@ -10,7 +10,7 @@
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
-// DEFINE: %{run_opts} = -e entry -entry-point-result=void
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
//
@@ -365,84 +365,8 @@ module {
return %0 : tensor<4x4xf64, #DCSR>
}
- //
- // Utility functions to dump the value of a tensor.
- //
-
- func.func @dump_vec(%arg0: tensor<?xf64, #SparseVector>) {
- // Dump the values array to verify only sparse contents are stored.
- %c0 = arith.constant 0 : index
- %d0 = arith.constant 0.0 : f64
- %0 = sparse_tensor.values %arg0 : tensor<?xf64, #SparseVector> to memref<?xf64>
- %1 = vector.transfer_read %0[%c0], %d0: memref<?xf64>, vector<16xf64>
- vector.print %1 : vector<16xf64>
- // Dump the dense vector to verify structure is correct.
- %dv = sparse_tensor.convert %arg0 : tensor<?xf64, #SparseVector> to tensor<?xf64>
- %3 = vector.transfer_read %dv[%c0], %d0: tensor<?xf64>, vector<32xf64>
- vector.print %3 : vector<32xf64>
- bufferization.dealloc_tensor %dv : tensor<?xf64>
- return
- }
-
- func.func @dump_vec_i32(%arg0: tensor<?xi32, #SparseVector>) {
- // Dump the values array to verify only sparse contents are stored.
- %c0 = arith.constant 0 : index
- %d0 = arith.constant 0 : i32
- %0 = sparse_tensor.values %arg0 : tensor<?xi32, #SparseVector> to memref<?xi32>
- %1 = vector.transfer_read %0[%c0], %d0: memref<?xi32>, vector<24xi32>
- vector.print %1 : vector<24xi32>
- // Dump the dense vector to verify structure is correct.
- %dv = sparse_tensor.convert %arg0 : tensor<?xi32, #SparseVector> to tensor<?xi32>
- %3 = vector.transfer_read %dv[%c0], %d0: tensor<?xi32>, vector<32xi32>
- vector.print %3 : vector<32xi32>
- bufferization.dealloc_tensor %dv : tensor<?xi32>
- return
- }
-
- func.func @dump_mat(%arg0: tensor<?x?xf64, #DCSR>) {
- %d0 = arith.constant 0.0 : f64
- %c0 = arith.constant 0 : index
- %dm = sparse_tensor.convert %arg0 : tensor<?x?xf64, #DCSR> to tensor<?x?xf64>
- %1 = vector.transfer_read %dm[%c0, %c0], %d0: tensor<?x?xf64>, vector<4x8xf64>
- vector.print %1 : vector<4x8xf64>
- bufferization.dealloc_tensor %dm : tensor<?x?xf64>
- return
- }
-
- func.func @dump_mat_4x4(%A: tensor<4x4xf64, #DCSR>) {
- %c0 = arith.constant 0 : index
- %du = arith.constant 0.0 : f64
-
- %c = sparse_tensor.convert %A : tensor<4x4xf64, #DCSR> to tensor<4x4xf64>
- %v = vector.transfer_read %c[%c0, %c0], %du: tensor<4x4xf64>, vector<4x4xf64>
- vector.print %v : vector<4x4xf64>
-
- %1 = sparse_tensor.values %A : tensor<4x4xf64, #DCSR> to memref<?xf64>
- %2 = vector.transfer_read %1[%c0], %du: memref<?xf64>, vector<16xf64>
- vector.print %2 : vector<16xf64>
-
- bufferization.dealloc_tensor %c : tensor<4x4xf64>
- return
- }
-
- func.func @dump_mat_4x4_i8(%A: tensor<4x4xi8, #DCSR>) {
- %c0 = arith.constant 0 : index
- %du = arith.constant 0 : i8
-
- %c = sparse_tensor.convert %A : tensor<4x4xi8, #DCSR> to tensor<4x4xi8>
- %v = vector.transfer_read %c[%c0, %c0], %du: tensor<4x4xi8>, vector<4x4xi8>
- vector.print %v : vector<4x4xi8>
-
- %1 = sparse_tensor.values %A : tensor<4x4xi8, #DCSR> to memref<?xi8>
- %2 = vector.transfer_read %1[%c0], %du: memref<?xi8>, vector<16xi8>
- vector.print %2 : vector<16xi8>
-
- bufferization.dealloc_tensor %c : tensor<4x4xi8>
- return
- }
-
// Driver method to call and verify kernels.
- func.func @entry() {
+ func.func @main() {
%c0 = arith.constant 0 : index
// Setup sparse vectors.
@@ -525,45 +449,149 @@ module {
//
// Verify the results.
//
- // CHECK: ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0, 0 )
- // CHECK-NEXT: ( 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 5, 6, 0, 0, 0, 0, 0, 0, 7, 8, 0, 9 )
- // CHECK-NEXT: ( 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 0, 0, 0, 0, 0, 0 )
- // CHECK-NEXT: ( 0, 11, 0, 12, 13, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 15, 0, 16, 0, 0, 17, 0, 0, 0, 0, 0, 0, 18, 19, 0, 20 )
- // CHECK-NEXT: ( 1, 11, 2, 13, 14, 3, 15, 4, 16, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
- // CHECK-NEXT: ( 1, 11, 0, 2, 13, 0, 0, 0, 0, 0, 14, 3, 0, 0, 0, 0, 15, 4, 16, 0, 5, 6, 0, 0, 0, 0, 0, 0, 7, 8, 0, 9 )
- // CHECK-NEXT: ( 0, 6, 3, 28, 0, 6, 56, 72, 9, 0, 0, 0, 0, 0, 0, 0 )
- // CHECK-NEXT: ( 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 28, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 56, 72, 0, 9 )
- // CHECK-NEXT: ( 1, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
- // CHECK-NEXT: ( 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
- // CHECK-NEXT: ( 0, 3, 11, 17, 20, 21, 28, 29, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
- // CHECK-NEXT: ( 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 17, 0, 0, 20, 21, 0, 0, 0, 0, 0, 0, 28, 29, 0, 31 )
- // CHECK-NEXT: ( ( 7, 0, 0, 0, 0, 0, 0, -5 ), ( -4, 0, 0, 0, 0, 0, -3, 0 ), ( 0, -2, 0, 0, 0, 0, 0, 7 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ) )
- // CHECK-NEXT: ( ( 2, 0, 4, 1 ), ( 0, 2.5, 0, 0 ), ( 1, 5, 2, 4 ), ( 5, 4, 0, 0 ) )
- // CHECK-NEXT: ( 2, 4, 1, 2.5, 1, 5, 2, 4, 5, 4, 0, 0, 0, 0, 0, 0 )
- // CHECK-NEXT: ( ( 2, 0, 4, 1 ), ( 0, 2.5, 0, 0 ), ( 1, 5, 2, 4 ), ( 5, 4, 0, 0 ) )
- // CHECK-NEXT: ( 2, 4, 1, 2.5, 1, 5, 2, 4, 5, 4, 0, 0, 0, 0, 0, 0 )
- // CHECK-NEXT: ( ( 2, 0, 4, 1 ), ( 0, 2.5, 0, 0 ), ( -1, -5, 2, 4 ), ( 1, 4, 0, 0 ) )
- // CHECK-NEXT: ( 2, 4, 1, 2.5, -1, -5, 2, 4, 1, 4, 0, 0, 0, 0, 0, 0 )
- // CHECK-NEXT: ( ( 0, 0, 1, -1 ), ( 0, 1, 0, 0 ), ( -1, -2, -2, 2 ), ( 1, 2, 0, 0 ) )
- // CHECK-NEXT: ( 0, 1, -1, 1, -1, -2, -2, 2, 1, 2, 0, 0, 0, 0, 0, 0 )
- // CHECK-NEXT: ( ( 1, 0, 0, 0 ), ( 0, 0, 0, 0 ), ( 0, 0, 0, 0 ), ( 0, 0, 0, 0 ) )
- // CHECK-NEXT: ( 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
- // CHECK-NEXT: ( ( 0, 0, 0, -1 ), ( 0, 0, 0, 0 ), ( -1, -5, -2, 4 ), ( 0, 4, 0, 0 ) )
- // CHECK-NEXT: ( -1, -1, -5, -2, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 9
+ // CHECK-NEXT: dim = ( 32 )
+ // CHECK-NEXT: lvl = ( 32 )
+ // CHECK-NEXT: pos[0] : ( 0, 9,
+ // CHECK-NEXT: crd[0] : ( 0, 3, 11, 17, 20, 21, 28, 29, 31,
+ // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 9,
+ // CHECK-NEXT: ----
+ //
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 10
+ // CHECK-NEXT: dim = ( 32 )
+ // CHECK-NEXT: lvl = ( 32 )
+ // CHECK-NEXT: pos[0] : ( 0, 10,
+ // CHECK-NEXT: crd[0] : ( 1, 3, 4, 10, 16, 18, 21, 28, 29, 31,
+ // CHECK-NEXT: values : ( 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
+ // CHECK-NEXT: ----
+ //
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 14
+ // CHECK-NEXT: dim = ( 32 )
+ // CHECK-NEXT: lvl = ( 32 )
+ // CHECK-NEXT: pos[0] : ( 0, 14,
+ // CHECK-NEXT: crd[0] : ( 0, 1, 3, 4, 10, 11, 16, 17, 18, 20, 21, 28, 29, 31,
+ // CHECK-NEXT: values : ( 1, 11, 2, 13, 14, 3, 15, 4, 16, 5, 6, 7, 8, 9,
+ // CHECK-NEXT: ----
+ //
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 9
+ // CHECK-NEXT: dim = ( 32 )
+ // CHECK-NEXT: lvl = ( 32 )
+ // CHECK-NEXT: pos[0] : ( 0, 9,
+ // CHECK-NEXT: crd[0] : ( 0, 3, 11, 17, 20, 21, 28, 29, 31,
+ // CHECK-NEXT: values : ( 0, 6, 3, 28, 0, 6, 56, 72, 9,
+ // CHECK-NEXT: ----
+ //
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 4
+ // CHECK-NEXT: dim = ( 32 )
+ // CHECK-NEXT: lvl = ( 32 )
+ // CHECK-NEXT: pos[0] : ( 0, 4,
+ // CHECK-NEXT: crd[0] : ( 0, 11, 17, 20,
+ // CHECK-NEXT: values : ( 1, 3, 4, 5,
+ // CHECK-NEXT: ----
+ //
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 9
+ // CHECK-NEXT: dim = ( 32 )
+ // CHECK-NEXT: lvl = ( 32 )
+ // CHECK-NEXT: pos[0] : ( 0, 9,
+ // CHECK-NEXT: crd[0] : ( 0, 3, 11, 17, 20, 21, 28, 29, 31,
+ // CHECK-NEXT: values : ( 0, 3, 11, 17, 20, 21, 28, 29, 31,
+ // CHECK-NEXT: ----
+ //
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 6
+ // CHECK-NEXT: dim = ( 4, 8 )
+ // CHECK-NEXT: lvl = ( 4, 8 )
+ // CHECK-NEXT: pos[0] : ( 0, 3,
+ // CHECK-NEXT: crd[0] : ( 0, 1, 2,
+ // CHECK-NEXT: pos[1] : ( 0, 2, 4, 6,
+ // CHECK-NEXT: crd[1] : ( 0, 7, 0, 6, 1, 7,
+ // CHECK-NEXT: values : ( 7, -5, -4, -3, -2, 7,
+ // CHECK-NEXT: ----
+ //
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 10
+ // CHECK-NEXT: dim = ( 4, 4 )
+ // CHECK-NEXT: lvl = ( 4, 4 )
+ // CHECK-NEXT: pos[0] : ( 0, 4,
+ // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3,
+ // CHECK-NEXT: pos[1] : ( 0, 3, 4, 8, 10,
+ // CHECK-NEXT: crd[1] : ( 0, 2, 3, 1, 0, 1, 2, 3, 0, 1,
+ // CHECK-NEXT: values : ( 2, 4, 1, 2.5, 1, 5, 2, 4, 5, 4,
+ // CHECK-NEXT: ----
+ //
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 10
+ // CHECK-NEXT: dim = ( 4, 4 )
+ // CHECK-NEXT: lvl = ( 4, 4 )
+ // CHECK-NEXT: pos[0] : ( 0, 4,
+ // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3,
+ // CHECK-NEXT: pos[1] : ( 0, 3, 4, 8, 10,
+ // CHECK-NEXT: crd[1] : ( 0, 2, 3, 1, 0, 1, 2, 3, 0, 1,
+ // CHECK-NEXT: values : ( 2, 4, 1, 2.5, 1, 5, 2, 4, 5, 4,
+ // CHECK-NEXT: ----
+ //
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 10
+ // CHECK-NEXT: dim = ( 4, 4 )
+ // CHECK-NEXT: lvl = ( 4, 4 )
+ // CHECK-NEXT: pos[0] : ( 0, 4,
+ // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3,
+ // CHECK-NEXT: pos[1] : ( 0, 3, 4, 8, 10,
+ // CHECK-NEXT: crd[1] : ( 0, 2, 3, 1, 0, 1, 2, 3, 0, 1,
+ // CHECK-NEXT: values : ( 2, 4, 1, 2.5, -1, -5, 2, 4, 1, 4,
+ // CHECK-NEXT: ----
+ //
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 10
+ // CHECK-NEXT: dim = ( 4, 4 )
+ // CHECK-NEXT: lvl = ( 4, 4 )
+ // CHECK-NEXT: pos[0] : ( 0, 4,
+ // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3,
+ // CHECK-NEXT: pos[1] : ( 0, 3, 4, 8, 10,
+ // CHECK-NEXT: crd[1] : ( 0, 2, 3, 1, 0, 1, 2, 3, 0, 1,
+ // CHECK-NEXT: values : ( 0, 1, -1, 1, -1, -2, -2, 2, 1, 2,
+ // CHECK-NEXT: ----
+ //
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 4
+ // CHECK-NEXT: dim = ( 4, 4 )
+ // CHECK-NEXT: lvl = ( 4, 4 )
+ // CHECK-NEXT: pos[0] : ( 0, 3,
+ // CHECK-NEXT: crd[0] : ( 0, 1, 3,
+ // CHECK-NEXT: pos[1] : ( 0, 2, 3, 4,
+ // CHECK-NEXT: crd[1] : ( 0, 2, 1, 0,
+ // CHECK-NEXT: values : ( 1, 0, 0, 0,
+ // CHECK-NEXT: ----
+ //
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 6
+ // CHECK-NEXT: dim = ( 4, 4 )
+ // CHECK-NEXT: lvl = ( 4, 4 )
+ // CHECK-NEXT: pos[0] : ( 0, 3,
+ // CHECK-NEXT: crd[0] : ( 0, 2, 3,
+ // CHECK-NEXT: pos[1] : ( 0, 1, 5, 6,
+ // CHECK-NEXT: crd[1] : ( 3, 0, 1, 2, 3, 1,
+ // CHECK-NEXT: values : ( -1, -1, -5, -2, 4, 4,
//
- call @dump_vec(%sv1) : (tensor<?xf64, #SparseVector>) -> ()
- call @dump_vec(%sv2) : (tensor<?xf64, #SparseVector>) -> ()
- call @dump_vec_i32(%0) : (tensor<?xi32, #SparseVector>) -> ()
- call @dump_vec(%1) : (tensor<?xf64, #SparseVector>) -> ()
- call @dump_vec(%2) : (tensor<?xf64, #SparseVector>) -> ()
- call @dump_vec_i32(%3) : (tensor<?xi32, #SparseVector>) -> ()
- call @dump_mat(%5) : (tensor<?x?xf64, #DCSR>) -> ()
- call @dump_mat_4x4(%6) : (tensor<4x4xf64, #DCSR>) -> ()
- call @dump_mat_4x4(%7) : (tensor<4x4xf64, #DCSR>) -> ()
- call @dump_mat_4x4(%8) : (tensor<4x4xf64, #DCSR>) -> ()
- call @dump_mat_4x4(%9) : (tensor<4x4xf64, #DCSR>) -> ()
- call @dump_mat_4x4_i8(%10) : (tensor<4x4xi8, #DCSR>) -> ()
- call @dump_mat_4x4(%11) : (tensor<4x4xf64, #DCSR>) -> ()
+ sparse_tensor.print %sv1 : tensor<?xf64, #SparseVector>
+ sparse_tensor.print %sv2 : tensor<?xf64, #SparseVector>
+ sparse_tensor.print %0 : tensor<?xi32, #SparseVector>
+ sparse_tensor.print %1 : tensor<?xf64, #SparseVector>
+ sparse_tensor.print %2 : tensor<?xf64, #SparseVector>
+ sparse_tensor.print %3 : tensor<?xi32, #SparseVector>
+ sparse_tensor.print %5 : tensor<?x?xf64, #DCSR>
+ sparse_tensor.print %6 : tensor<4x4xf64, #DCSR>
+ sparse_tensor.print %7 : tensor<4x4xf64, #DCSR>
+ sparse_tensor.print %8 : tensor<4x4xf64, #DCSR>
+ sparse_tensor.print %9 : tensor<4x4xf64, #DCSR>
+ sparse_tensor.print %10 : tensor<4x4xi8, #DCSR>
+ sparse_tensor.print %11 : tensor<4x4xf64, #DCSR>
// Release the resources.
bufferization.dealloc_tensor %sv1 : tensor<?xf64, #SparseVector>
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_block3d.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_block3d.mlir
old mode 100755
new mode 100644
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conv_2d_55.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conv_2d_55.mlir
old mode 100755
new mode 100644
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_pack_d.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_pack_d.mlir
old mode 100755
new mode 100644
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_print.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_print.mlir
old mode 100755
new mode 100644
|
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Continuing the efforts started in #83357