Skip to content

[mlir][sparse] migrate integration tests to sparse_tensor.print #83357

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 29, 2024

Conversation

aartbik
Copy link
Contributor

@aartbik aartbik commented Feb 29, 2024

This is first step (of many) cleaning up our tests to use the new and exciting sparse_tensor.print operation instead of lengthy extraction + print ops.

This is first step (of many) cleaning up our tests to use
the new and exciting sparse_tensor.print operation instead
of lengthy extraction + print ops.
@llvmbot
Copy link
Member

llvmbot commented Feb 29, 2024

@llvm/pr-subscribers-mlir

@llvm/pr-subscribers-mlir-sparse

Author: Aart Bik (aartbik)

Changes

This is first step (of many) cleaning up our tests to use the new and exciting sparse_tensor.print operation instead of lengthy extraction + print ops.


Full diff: https://github.com/llvm/llvm-project/pull/83357.diff

6 Files Affected:

  • (modified) mlir/test/Integration/Dialect/SparseTensor/CPU/block.mlir (+23-22)
  • (modified) mlir/test/Integration/Dialect/SparseTensor/CPU/block_majors.mlir (+37-48)
  • (modified) mlir/test/Integration/Dialect/SparseTensor/CPU/dense_output.mlir (+8-10)
  • (modified) mlir/test/Integration/Dialect/SparseTensor/CPU/dense_output_bf16.mlir (+8-16)
  • (modified) mlir/test/Integration/Dialect/SparseTensor/CPU/dense_output_f16.mlir (+8-16)
  • (modified) mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_re_im.mlir (+19-27)
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/block.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/block.mlir
index 6468c4b45d2479..1184d407541b6f 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/block.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/block.mlir
@@ -10,7 +10,7 @@
 // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
 // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
 // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
-// DEFINE: %{run_opts} = -e entry -entry-point-result=void
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
 // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
 // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
 //
@@ -82,38 +82,39 @@ module {
     return %0 : tensor<?x?xf64, #BSR>
   }
 
-  func.func @entry() {
+  func.func @main() {
     %c0 = arith.constant 0   : index
     %f0 = arith.constant 0.0 : f64
 
     %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
     %A = sparse_tensor.new %fileName : !Filename to tensor<?x?xf64, #BSR>
 
-    // CHECK:      ( 0, 2, 3 )
-    // CHECK-NEXT: ( 0, 2, 1 )
-    // CHECK-NEXT: ( 1, 2, 0, 3, 4, 0, 0, 5, 6, 7, 8, 0 )
-    %pos = sparse_tensor.positions %A {level = 1 : index } : tensor<?x?xf64, #BSR> to memref<?xindex>
-    %vecp = vector.transfer_read %pos[%c0], %c0 : memref<?xindex>, vector<3xindex>
-    vector.print %vecp : vector<3xindex>
-    %crd = sparse_tensor.coordinates %A {level = 1 : index } : tensor<?x?xf64, #BSR> to memref<?xindex>
-    %vecc = vector.transfer_read %crd[%c0], %c0 : memref<?xindex>, vector<3xindex>
-    vector.print %vecc : vector<3xindex>
-    %val = sparse_tensor.values %A : tensor<?x?xf64, #BSR> to memref<?xf64>
-    %vecv = vector.transfer_read %val[%c0], %f0 : memref<?xf64>, vector<12xf64>
-    vector.print %vecv : vector<12xf64>
+    // CHECK:   ---- Sparse Tensor ----
+    // CHECK-NEXT: nse = 12
+    // CHECK-NEXT: pos[1] : ( 0, 2, 3,
+    // CHECK-NEXT: crd[1] : ( 0, 2, 1,
+    // CHECK-NEXT: values : ( 1, 2, 0, 3, 4, 0, 0, 5, 6, 7, 8, 0,
+    // CHECK-NEXT: ----
+    sparse_tensor.print %A : tensor<?x?xf64, #BSR>
 
-    // CHECK-NEXT: ( 1, 2, 0, 3, 4, 0, 0, 5, 6, 7, 8, 0 )
+    // CHECK-NEXT: ---- Sparse Tensor ----
+    // CHECK-NEXT: nse = 12
+    // CHECK-NEXT: pos[1] : ( 0, 2, 3,
+    // CHECK-NEXT: crd[1] : ( 0, 2, 1
+    // CHECK-NEXT: values : ( 1, 2, 0, 3, 4, 0, 0, 5, 6, 7, 8, 0,
+    // CHECK-NEXT: ----
     %t1 = sparse_tensor.reinterpret_map %A : tensor<?x?xf64, #BSR>
                                           to tensor<?x?x2x2xf64, #DSDD>
-    %vdsdd = sparse_tensor.values %t1 : tensor<?x?x2x2xf64, #DSDD> to memref<?xf64>
-    %vecdsdd = vector.transfer_read %vdsdd[%c0], %f0 : memref<?xf64>, vector<12xf64>
-    vector.print %vecdsdd : vector<12xf64>
+    sparse_tensor.print %t1 : tensor<?x?x2x2xf64, #DSDD>
 
-    // CHECK-NEXT: ( 3, 6, 0, 9, 12, 0, 0, 15, 18, 21, 24, 0 )
+    // CHECK-NEXT: ---- Sparse Tensor ----
+    // CHECK-NEXT: nse = 12
+    // CHECK-NEXT: pos[1] : ( 0, 2, 3,
+    // CHECK-NEXT: crd[1] : ( 0, 2, 1,
+    // CHECK-NEXT: values : ( 3, 6, 0, 9, 12, 0, 0, 15, 18, 21, 24, 0,
+    // CHECK-NEXT: ----
     %As = call @scale(%A) : (tensor<?x?xf64, #BSR>) -> (tensor<?x?xf64, #BSR>)
-    %vals = sparse_tensor.values %As : tensor<?x?xf64, #BSR> to memref<?xf64>
-    %vecs = vector.transfer_read %vals[%c0], %f0 : memref<?xf64>, vector<12xf64>
-    vector.print %vecs : vector<12xf64>
+    sparse_tensor.print %As : tensor<?x?xf64, #BSR>
 
     // Release the resources.
     bufferization.dealloc_tensor %A: tensor<?x?xf64, #BSR>
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/block_majors.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/block_majors.mlir
index cb06f099dd3703..f8e83b5019679f 100755
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/block_majors.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/block_majors.mlir
@@ -102,9 +102,15 @@
 //
 module {
 
-  // CHECK:      ( 0, 1, 2 )
-  // CHECK-NEXT: ( 0, 2 )
-  // CHECK-NEXT: ( 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7 )
+
+  //
+  // CHECK: ---- Sparse Tensor ----
+  // CHECK-NEXT: nse = 24
+  // CHECK-NEXT: pos[1] : ( 0, 1, 2,
+  // CHECK-NEXT: crd[1] : ( 0, 2,
+  // CHECK-NEXT: values : ( 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7,
+  // CHECK-NEXT: ----
+  //
   func.func @foo1() {
     // Build.
     %c0 = arith.constant 0   : index
@@ -115,23 +121,20 @@ module {
     > : tensor<6x16xf64>
     %s1 = sparse_tensor.convert %m : tensor<6x16xf64> to tensor<?x?xf64, #BSR_row_rowmajor>
     // Test.
-    %pos1 = sparse_tensor.positions %s1 {level = 1 : index } : tensor<?x?xf64, #BSR_row_rowmajor> to memref<?xindex>
-    %vecp1 = vector.transfer_read %pos1[%c0], %c0 : memref<?xindex>, vector<3xindex>
-    vector.print %vecp1 : vector<3xindex>
-    %crd1 = sparse_tensor.coordinates %s1 {level = 1 : index } : tensor<?x?xf64, #BSR_row_rowmajor> to memref<?xindex>
-    %vecc1 = vector.transfer_read %crd1[%c0], %c0 : memref<?xindex>, vector<2xindex>
-    vector.print %vecc1 : vector<2xindex>
-    %val1 = sparse_tensor.values %s1 : tensor<?x?xf64, #BSR_row_rowmajor> to memref<?xf64>
-    %vecv1 = vector.transfer_read %val1[%c0], %f0 : memref<?xf64>, vector<24xf64>
-    vector.print %vecv1 : vector<24xf64>
+    sparse_tensor.print %s1 : tensor<?x?xf64, #BSR_row_rowmajor>
     // Release.
     bufferization.dealloc_tensor %s1: tensor<?x?xf64, #BSR_row_rowmajor>
     return
   }
 
-  // CHECK-NEXT: ( 0, 1, 2 )
-  // CHECK-NEXT: ( 0, 2 )
-  // CHECK-NEXT: ( 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 5, 0, 0, 0, 0, 6, 0, 0, 7 )
+  //
+  // CHECK-NEXT: ---- Sparse Tensor ----
+  // CHECK-NEXT: nse = 24
+  // CHECK-NEXT: pos[1] : ( 0, 1, 2,
+  // CHECK-NEXT: crd[1] : ( 0, 2,
+  // CHECK-NEXT: values : ( 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 5, 0, 0, 0, 0, 6, 0, 0, 7,
+  // CHECK-NEXT: ----
+  //
   func.func @foo2() {
     // Build.
     %c0 = arith.constant 0   : index
@@ -142,23 +145,20 @@ module {
     > : tensor<6x16xf64>
     %s2 = sparse_tensor.convert %m : tensor<6x16xf64> to tensor<?x?xf64, #BSR_row_colmajor>
     // Test.
-    %pos2 = sparse_tensor.positions %s2 {level = 1 : index } : tensor<?x?xf64, #BSR_row_colmajor> to memref<?xindex>
-    %vecp2 = vector.transfer_read %pos2[%c0], %c0 : memref<?xindex>, vector<3xindex>
-    vector.print %vecp2 : vector<3xindex>
-    %crd2 = sparse_tensor.coordinates %s2 {level = 1 : index } : tensor<?x?xf64, #BSR_row_colmajor> to memref<?xindex>
-    %vecc2 = vector.transfer_read %crd2[%c0], %c0 : memref<?xindex>, vector<2xindex>
-    vector.print %vecc2 : vector<2xindex>
-    %val2 = sparse_tensor.values %s2 : tensor<?x?xf64, #BSR_row_colmajor> to memref<?xf64>
-    %vecv2 = vector.transfer_read %val2[%c0], %f0 : memref<?xf64>, vector<24xf64>
-    vector.print %vecv2 : vector<24xf64>
+    sparse_tensor.print %s2 : tensor<?x?xf64, #BSR_row_colmajor>
     // Release.
     bufferization.dealloc_tensor %s2: tensor<?x?xf64, #BSR_row_colmajor>
     return
   }
 
-  // CHECK-NEXT: ( 0, 1, 1, 2, 2 )
-  // CHECK-NEXT: ( 0, 1 )
-  // CHECK-NEXT: ( 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7 )
+  //
+  // CHECK-NEXT: ---- Sparse Tensor ----
+  // CHECK-NEXT: nse = 24
+  // CHECK-NEXT: pos[1] : ( 0, 1, 1, 2, 2,
+  // CHECK-NEXT: crd[1] : ( 0, 1,
+  // CHECK-NEXT: values : ( 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7,
+  // CHECK-NEXT: ----
+  //
   func.func @foo3() {
     // Build.
     %c0 = arith.constant 0   : index
@@ -169,23 +169,20 @@ module {
     > : tensor<6x16xf64>
     %s3 = sparse_tensor.convert %m : tensor<6x16xf64> to tensor<?x?xf64, #BSR_col_rowmajor>
     // Test.
-    %pos3 = sparse_tensor.positions %s3 {level = 1 : index } : tensor<?x?xf64, #BSR_col_rowmajor> to memref<?xindex>
-    %vecp3 = vector.transfer_read %pos3[%c0], %c0 : memref<?xindex>, vector<5xindex>
-    vector.print %vecp3 : vector<5xindex>
-    %crd3 = sparse_tensor.coordinates %s3 {level = 1 : index } : tensor<?x?xf64, #BSR_col_rowmajor> to memref<?xindex>
-    %vecc3 = vector.transfer_read %crd3[%c0], %c0 : memref<?xindex>, vector<2xindex>
-    vector.print %vecc3 : vector<2xindex>
-    %val3 = sparse_tensor.values %s3 : tensor<?x?xf64, #BSR_col_rowmajor> to memref<?xf64>
-    %vecv3 = vector.transfer_read %val3[%c0], %f0 : memref<?xf64>, vector<24xf64>
-    vector.print %vecv3 : vector<24xf64>
+    sparse_tensor.print %s3 : tensor<?x?xf64, #BSR_col_rowmajor>
     // Release.
     bufferization.dealloc_tensor %s3: tensor<?x?xf64, #BSR_col_rowmajor>
     return
   }
 
-  // CHECK-NEXT: ( 0, 1, 1, 2, 2 )
-  // CHECK-NEXT: ( 0, 1 )
-  // CHECK-NEXT: ( 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 5, 0, 0, 0, 0, 6, 0, 0, 7 )
+  //
+  // CHECK-NEXT: ---- Sparse Tensor ----
+  // CHECK-NEXT: nse = 24
+  // CHECK-NEXT: pos[1] : ( 0, 1, 1, 2, 2,
+  // CHECK-NEXT: crd[1] : ( 0, 1,
+  // CHECK-NEXT: values : ( 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 5, 0, 0, 0, 0, 6, 0, 0, 7,
+  // CHECK-NEXT: ----
+  //
   func.func @foo4() {
     // Build.
     %c0 = arith.constant 0   : index
@@ -196,15 +193,7 @@ module {
     > : tensor<6x16xf64>
     %s4 = sparse_tensor.convert %m : tensor<6x16xf64> to tensor<?x?xf64, #BSR_col_colmajor>
     // Test.
-    %pos4 = sparse_tensor.positions %s4 {level = 1 : index } : tensor<?x?xf64, #BSR_col_colmajor> to memref<?xindex>
-    %vecp4 = vector.transfer_read %pos4[%c0], %c0 : memref<?xindex>, vector<5xindex>
-    vector.print %vecp4 : vector<5xindex>
-    %crd4 = sparse_tensor.coordinates %s4 {level = 1 : index } : tensor<?x?xf64, #BSR_col_colmajor> to memref<?xindex>
-    %vecc4 = vector.transfer_read %crd4[%c0], %c0 : memref<?xindex>, vector<2xindex>
-    vector.print %vecc4 : vector<2xindex>
-    %val4 = sparse_tensor.values %s4 : tensor<?x?xf64, #BSR_col_colmajor> to memref<?xf64>
-    %vecv4 = vector.transfer_read %val4[%c0], %f0 : memref<?xf64>, vector<24xf64>
-    vector.print %vecv4 : vector<24xf64>
+    sparse_tensor.print %s4 : tensor<?x?xf64, #BSR_col_colmajor>
     // Release.
     bufferization.dealloc_tensor %s4: tensor<?x?xf64, #BSR_col_colmajor>
     return
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/dense_output.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/dense_output.mlir
index 5f6524a4b7af9e..c6ee0ce0705021 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/dense_output.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/dense_output.mlir
@@ -10,7 +10,7 @@
 // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
 // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
 // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
-// DEFINE: %{run_opts} = -e entry -entry-point-result=void
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
 // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
 // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
 //
@@ -83,12 +83,11 @@ module {
   }
 
   func.func private @getTensorFilename(index) -> (!Filename)
-  func.func private @printMemref1dF64(%ptr : memref<?xf64>) attributes { llvm.emit_c_interface }
 
   //
   // Main driver that reads matrix from file and calls the kernel.
   //
-  func.func @entry() {
+  func.func @main() {
     %d0 = arith.constant 0.0 : f64
     %c0 = arith.constant 0 : index
     %c1 = arith.constant 1 : index
@@ -104,14 +103,13 @@ module {
 
     //
     // Print the linearized 5x5 result for verification.
-    // CHECK: 25
-    // CHECK: [2,  0,  0,  2.8,  0,  0,  4,  0,  0,  5,  0,  0,  6,  0,  0,  8.2,  0,  0,  8,  0,  0,  10.4,  0,  0,  10
     //
-    %n = sparse_tensor.number_of_entries %0 : tensor<?x?xf64, #DenseMatrix>
-    vector.print %n : index
-    %m = sparse_tensor.values %0
-      : tensor<?x?xf64, #DenseMatrix> to memref<?xf64>
-    call @printMemref1dF64(%m) : (memref<?xf64>) -> ()
+    // CHECK:      ---- Sparse Tensor ----
+    // CHECK-NEXT: nse = 25
+    // CHECK-NEXT: values : ( 2, 0, 0, 2.8, 0, 0, 4, 0, 0, 5, 0, 0, 6, 0, 0, 8.2, 0, 0, 8, 0, 0, 10.4, 0, 0, 10,
+    // CHECK-NEXT: ----
+    //
+    sparse_tensor.print %0 : tensor<?x?xf64, #DenseMatrix>
 
     // Release the resources.
     bufferization.dealloc_tensor %a : tensor<?x?xf64, #SparseMatrix>
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/dense_output_bf16.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/dense_output_bf16.mlir
index 81cd2d81cbbc32..0b34ff581016da 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/dense_output_bf16.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/dense_output_bf16.mlir
@@ -10,7 +10,7 @@
 // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
 // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
 // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
-// DEFINE: %{run_opts} = -e entry -entry-point-result=void
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
 // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
 // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
 //
@@ -67,20 +67,8 @@ module {
     return %0 : tensor<?xbf16, #DenseVector>
   }
 
-  // Dumps a dense vector of type bf16.
-  func.func @dump_vec(%arg0: tensor<?xbf16, #DenseVector>) {
-    // Dump the values array to verify only sparse contents are stored.
-    %c0 = arith.constant 0 : index
-    %d0 = arith.constant -1.0 : bf16
-    %0 = sparse_tensor.values %arg0 : tensor<?xbf16, #DenseVector> to memref<?xbf16>
-    %1 = vector.transfer_read %0[%c0], %d0: memref<?xbf16>, vector<32xbf16>
-    %f1 = arith.extf %1: vector<32xbf16> to vector<32xf32>
-    vector.print %f1 : vector<32xf32>
-    return
-  }
-
   // Driver method to call and verify the kernel.
-  func.func @entry() {
+  func.func @main() {
     %c0 = arith.constant 0 : index
 
     // Setup sparse vectors.
@@ -103,8 +91,12 @@ module {
     //
     // Verify the result.
     //
-    // CHECK: ( 1, 11, 0, 2, 13, 0, 0, 0, 0, 0, 14, 3, 0, 0, 0, 0, 15, 4, 16, 0, 5, 6, 0, 0, 0, 0, 0, 0, 7, 8, 0, 9 )
-    call @dump_vec(%0) : (tensor<?xbf16, #DenseVector>) -> ()
+    // CHECK: ---- Sparse Tensor ----
+    // CHECK-NEXT: nse = 32
+    // CHECK-NEXT: values : ( 1, 11, 0, 2, 13, 0, 0, 0, 0, 0, 14, 3, 0, 0, 0, 0, 15, 4, 16, 0, 5, 6, 0, 0, 0, 0, 0, 0, 7, 8, 0, 9,
+    // CHECK-NEXT: ----
+    //
+    sparse_tensor.print %0 : tensor<?xbf16, #DenseVector>
 
     // Release the resources.
     bufferization.dealloc_tensor %sv1 : tensor<?xbf16, #SparseVector>
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/dense_output_f16.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/dense_output_f16.mlir
index b320afdb885842..495682169c2909 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/dense_output_f16.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/dense_output_f16.mlir
@@ -10,7 +10,7 @@
 // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
 // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
 // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
-// DEFINE: %{run_opts} = -e entry -entry-point-result=void
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
 // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
 // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
 //
@@ -68,20 +68,8 @@ module {
     return %0 : tensor<?xf16, #DenseVector>
   }
 
-  // Dumps a dense vector of type f16.
-  func.func @dump_vec(%arg0: tensor<?xf16, #DenseVector>) {
-    // Dump the values array to verify only sparse contents are stored.
-    %c0 = arith.constant 0 : index
-    %d0 = arith.constant -1.0 : f16
-    %0 = sparse_tensor.values %arg0 : tensor<?xf16, #DenseVector> to memref<?xf16>
-    %1 = vector.transfer_read %0[%c0], %d0: memref<?xf16>, vector<32xf16>
-    %f1 = arith.extf %1: vector<32xf16> to vector<32xf32>
-    vector.print %f1 : vector<32xf32>
-    return
-  }
-
   // Driver method to call and verify the kernel.
-  func.func @entry() {
+  func.func @main() {
     %c0 = arith.constant 0 : index
 
     // Setup sparse vectors.
@@ -104,8 +92,12 @@ module {
     //
     // Verify the result.
     //
-    // CHECK: ( 1, 11, 0, 2, 13, 0, 0, 0, 0, 0, 14, 3, 0, 0, 0, 0, 15, 4, 16, 0, 5, 6, 0, 0, 0, 0, 0, 0, 7, 8, 0, 9 )
-    call @dump_vec(%0) : (tensor<?xf16, #DenseVector>) -> ()
+    // CHECK:      ---- Sparse Tensor ----
+    // CHECK-NEXT: nse = 32
+    // CHECK-NEXT: values : ( 1, 11, 0, 2, 13, 0, 0, 0, 0, 0, 14, 3, 0, 0, 0, 0, 15, 4, 16, 0, 5, 6, 0, 0, 0, 0, 0, 0, 7, 8, 0, 9,
+    // CHECK-NEXT: ----
+    //
+    sparse_tensor.print %0 : tensor<?xf16, #DenseVector>
 
     // Release the resources.
     bufferization.dealloc_tensor %sv1 : tensor<?xf16, #SparseVector>
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_re_im.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_re_im.mlir
index b44ffc30c3b1ee..1860fc1c7027a1 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_re_im.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_re_im.mlir
@@ -10,7 +10,7 @@
 // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
 // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
 // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
-// DEFINE: %{run_opts} = -e entry -entry-point-result=void
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
 // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
 // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
 //
@@ -72,22 +72,7 @@ module {
     return %0 : tensor<?xf32, #SparseVector>
   }
 
-  func.func @dump(%arg0: tensor<?xf32, #SparseVector>) {
-    %c0 = arith.constant 0 : index
-    %d0 = arith.constant -1.0 : f32
-    %n = sparse_tensor.number_of_entries %arg0 : tensor<?xf32, #SparseVector>
-    vector.print %n : index
-    %values = sparse_tensor.values %arg0 : tensor<?xf32, #SparseVector> to memref<?xf32>
-    %0 = vector.transfer_read %values[%c0], %d0: memref<?xf32>, vector<3xf32>
-    vector.print %0 : vector<3xf32>
-    %coordinates = sparse_tensor.coordinates %arg0 { level = 0 : index } : tensor<?xf32, #SparseVector> to memref<?xindex>
-    %1 = vector.transfer_read %coordinates[%c0], %c0: memref<?xindex>, vector<3xindex>
-    vector.print %1 : vector<3xindex>
-    return
-  }
-
-  // Driver method to call and verify functions cim and cre.
-  func.func @entry() {
+  func.func @main() {
     // Setup sparse vectors.
     %v1 = arith.constant sparse<
        [ [0], [20], [31] ],
@@ -104,20 +89,27 @@ module {
     //
     // Verify the results.
     //
-    // CHECK:      3
-    // CHECK-NEXT: ( 5.13, 3, 5 )
-    // CHECK-NEXT: ( 0, 20, 31 )
-    // CHECK-NEXT: 3
-    // CHECK-NEXT: ( 2, 4, 6 )
-    // CHECK-NEXT: ( 0, 20, 31 )
+    // CHECK:    ---- Sparse Tensor ----
+    // CHECK-NEXT: nse = 3
+    // CHECK-NEXT: pos[0] : ( 0, 3,
+    // CHECK-NEXT: crd[0] : ( 0, 20, 31,
+    // CHECK-NEXT: values : ( 5.13, 3, 5,
+    // CHECK-NEXT: ----
+    //
+    // CHECK-NEXT: ---- Sparse Tensor ----
+    // CHECK-NEXT: nse = 3
+    // CHECK-NEXT: pos[0] : ( 0, 3,
+    // CHECK-NEXT: crd[0] : ( 0, 20, 31,
+    // CHECK-NEXT: values : ( 2, 4, 6,
+    // CHECK-NEXT: ----
     //
-    call @dump(%0) : (tensor<?xf32, #SparseVector>) -> ()
-    call @dump(%1) : (tensor<?xf32, #SparseVector>) -> ()
+    sparse_tensor.print %0 : tensor<?xf32, #SparseVector>
+    sparse_tensor.print %1 : tensor<?xf32, #SparseVector>
 
     // Release the resources.
     bufferization.dealloc_tensor %sv1 : tensor<?xcomplex<f32>, #SparseVector>
-    bufferization.dealloc_tensor %0 : tensor<?xf32, #SparseVector>
-    bufferization.dealloc_tensor %1 : tensor<?xf32, #SparseVector>
+    bufferization.dealloc_tensor %0   : tensor<?xf32, #SparseVector>
+    bufferization.dealloc_tensor %1   : tensor<?xf32, #SparseVector>
     return
   }
 }

@aartbik aartbik merged commit fdf44b3 into llvm:main Feb 29, 2024
@aartbik aartbik deleted the bik branch February 29, 2024 00:40
yinying-lisa-li added a commit that referenced this pull request Feb 29, 2024
yinying-lisa-li added a commit that referenced this pull request Mar 1, 2024
aartbik added a commit to aartbik/llvm-project that referenced this pull request Mar 1, 2024
Continuous efforts llvm#83357 for our sparse CUDA tests
aartbik added a commit that referenced this pull request Mar 4, 2024
Continuous efforts #83357 for our sparse CUDA tests
aartbik added a commit to aartbik/llvm-project that referenced this pull request Mar 4, 2024
aartbik added a commit to aartbik/llvm-project that referenced this pull request Mar 4, 2024
aartbik added a commit that referenced this pull request Mar 4, 2024
aartbik added a commit to aartbik/llvm-project that referenced this pull request Mar 5, 2024
aartbik added a commit that referenced this pull request Mar 5, 2024
aartbik added a commit to aartbik/llvm-project that referenced this pull request Mar 5, 2024
aartbik added a commit that referenced this pull request Mar 5, 2024
mylai-mtk pushed a commit to mylai-mtk/llvm-project that referenced this pull request Jul 12, 2024
…#83357)

This is first step (of many) cleaning up our tests to use the new and
exciting sparse_tensor.print operation instead of lengthy extraction +
print ops.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
mlir:sparse Sparse compiler in MLIR mlir
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants