-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[mlir][sparse] migrate tests to sparse_tensor.print #84055
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Continuing the efforts started in llvm#83357
@llvm/pr-subscribers-mlir @llvm/pr-subscribers-mlir-sparse Author: Aart Bik (aartbik) ChangesContinuing the efforts started in #83357 Patch is 25.95 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/84055.diff 5 Files Affected:
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/concatenate_dim_0.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/concatenate_dim_0.mlir
index 515f5b88b480d2..3fa1db1a14cea2 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/concatenate_dim_0.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/concatenate_dim_0.mlir
@@ -10,7 +10,7 @@
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
-// DEFINE: %{run_opts} = -e entry -entry-point-result=void
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
//
@@ -51,11 +51,6 @@
module {
func.func private @printMemrefF64(%ptr : tensor<*xf64>)
- func.func private @printMemref1dF64(%ptr : memref<?xf64>) attributes { llvm.emit_c_interface }
-
- //
- // Tests without permutation.
- //
// Concats all sparse matrices (with different encodings) to a sparse matrix.
func.func @concat_sparse_sparse(%arg0: tensor<2x4xf64, #MAT_C_C>, %arg1: tensor<3x4xf64, #MAT_C_D>, %arg2: tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64, #MAT_C_C> {
@@ -85,30 +80,15 @@ module {
return %0 : tensor<9x4xf64>
}
- func.func @dump_mat_9x4(%A: tensor<9x4xf64, #MAT_C_C>) {
- %c = sparse_tensor.convert %A : tensor<9x4xf64, #MAT_C_C> to tensor<9x4xf64>
- %cu = tensor.cast %c : tensor<9x4xf64> to tensor<*xf64>
- call @printMemrefF64(%cu) : (tensor<*xf64>) -> ()
-
- %n = sparse_tensor.number_of_entries %A : tensor<9x4xf64, #MAT_C_C>
- vector.print %n : index
-
- %1 = sparse_tensor.values %A : tensor<9x4xf64, #MAT_C_C> to memref<?xf64>
- call @printMemref1dF64(%1) : (memref<?xf64>) -> ()
-
- bufferization.dealloc_tensor %c : tensor<9x4xf64>
- return
- }
-
+ // Outputs dense matrix.
func.func @dump_mat_dense_9x4(%A: tensor<9x4xf64>) {
%u = tensor.cast %A : tensor<9x4xf64> to tensor<*xf64>
call @printMemrefF64(%u) : (tensor<*xf64>) -> ()
-
return
}
// Driver method to call and verify kernels.
- func.func @entry() {
+ func.func @main() {
%m24 = arith.constant dense<
[ [ 1.0, 0.0, 3.0, 0.0],
[ 0.0, 2.0, 0.0, 0.0] ]> : tensor<2x4xf64>
@@ -126,22 +106,24 @@ module {
%sm34cd = sparse_tensor.convert %m34 : tensor<3x4xf64> to tensor<3x4xf64, #MAT_C_D>
%sm44dc = sparse_tensor.convert %m44 : tensor<4x4xf64> to tensor<4x4xf64, #MAT_D_C>
- // CHECK: {{\[}}[1, 0, 3, 0],
- // CHECK-NEXT: [0, 2, 0, 0],
- // CHECK-NEXT: [1, 0, 1, 1],
- // CHECK-NEXT: [0, 0.5, 0, 0],
- // CHECK-NEXT: [1, 5, 2, 0],
- // CHECK-NEXT: [0, 0, 1.5, 1],
- // CHECK-NEXT: [0, 3.5, 0, 0],
- // CHECK-NEXT: [1, 5, 2, 0],
- // CHECK-NEXT: [1, 0.5, 0, 0]]
- // CHECK-NEXT: 18
- // CHECK: [1, 3, 2, 1, 1, 1, 0.5, 1, 5, 2, 1.5, 1, 3.5, 1, 5, 2, 1, 0.5
+ //
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 18
+ // CHECK-NEXT: dim = ( 9, 4 )
+ // CHECK-NEXT: lvl = ( 9, 4 )
+ // CHECK-NEXT: pos[0] : ( 0, 9,
+ // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3, 4, 5, 6, 7, 8,
+ // CHECK-NEXT: pos[1] : ( 0, 2, 3, 6, 7, 10, 12, 13, 16, 18,
+ // CHECK-NEXT: crd[1] : ( 0, 2, 1, 0, 2, 3, 1, 0, 1, 2, 2, 3, 1, 0, 1, 2, 0, 1,
+ // CHECK-NEXT: values : ( 1, 3, 2, 1, 1, 1, 0.5, 1, 5, 2, 1.5, 1, 3.5, 1, 5, 2, 1, 0.5,
+ // CHECK-NEXT: ----
+ //
%0 = call @concat_sparse_sparse(%sm24cc, %sm34cd, %sm44dc)
: (tensor<2x4xf64, #MAT_C_C>, tensor<3x4xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64, #MAT_C_C>
- call @dump_mat_9x4(%0) : (tensor<9x4xf64, #MAT_C_C>) -> ()
+ sparse_tensor.print %0 : tensor<9x4xf64, #MAT_C_C>
- // CHECK: {{\[}}[1, 0, 3, 0],
+ //
+ // CHECK: {{\[}}[1, 0, 3, 0],
// CHECK-NEXT: [0, 2, 0, 0],
// CHECK-NEXT: [1, 0, 1, 1],
// CHECK-NEXT: [0, 0.5, 0, 0],
@@ -150,6 +132,7 @@ module {
// CHECK-NEXT: [0, 3.5, 0, 0],
// CHECK-NEXT: [1, 5, 2, 0],
// CHECK-NEXT: [1, 0.5, 0, 0]]
+ //
%1 = call @concat_sparse_dense(%sm24cc, %sm34cd, %sm44dc)
: (tensor<2x4xf64, #MAT_C_C>, tensor<3x4xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64>
call @dump_mat_dense_9x4(%1) : (tensor<9x4xf64>) -> ()
@@ -167,22 +150,24 @@ module {
// CHECK: [1, 3, 2, 1, 1, 1, 0.5, 1, 5, 2, 1.5, 1, 3.5, 1, 5, 2, 1, 0.5
%2 = call @concat_mix_sparse(%m24, %sm34cd, %sm44dc)
: (tensor<2x4xf64>, tensor<3x4xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64, #MAT_C_C>
- call @dump_mat_9x4(%2) : (tensor<9x4xf64, #MAT_C_C>) -> ()
-
- // CHECK: {{\[}}[1, 0, 3, 0],
- // CHECK-NEXT: [0, 2, 0, 0],
- // CHECK-NEXT: [1, 0, 1, 1],
- // CHECK-NEXT: [0, 0.5, 0, 0],
- // CHECK-NEXT: [1, 5, 2, 0],
- // CHECK-NEXT: [0, 0, 1.5, 1],
- // CHECK-NEXT: [0, 3.5, 0, 0],
- // CHECK-NEXT: [1, 5, 2, 0],
- // CHECK-NEXT: [1, 0.5, 0, 0]]
+ sparse_tensor.print %2 : tensor<9x4xf64, #MAT_C_C>
+
+ //
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 18
+ // CHECK-NEXT: dim = ( 9, 4 )
+ // CHECK-NEXT: lvl = ( 9, 4 )
+ // CHECK-NEXT: pos[0] : ( 0, 9, )
+ // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3, 4, 5, 6, 7, 8, )
+ // CHECK-NEXT: pos[1] : ( 0, 2, 3, 6, 7, 10, 12, 13, 16, 18, )
+ // CHECK-NEXT: crd[1] : ( 0, 2, 1, 0, 2, 3, 1, 0, 1, 2, 2, 3, 1, 0, 1, 2, 0, 1, )
+ // CHECK-NEXT: values : ( 1, 3, 2, 1, 1, 1, 0.5, 1, 5, 2, 1.5, 1, 3.5, 1, 5, 2, 1, 0.5, )
+ // CHECK-NEXT: ----
+ //
%3 = call @concat_mix_dense(%m24, %sm34cd, %sm44dc)
: (tensor<2x4xf64>, tensor<3x4xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64>
call @dump_mat_dense_9x4(%3) : (tensor<9x4xf64>) -> ()
-
// Release resources.
bufferization.dealloc_tensor %sm24cc : tensor<2x4xf64, #MAT_C_C>
bufferization.dealloc_tensor %sm34cd : tensor<3x4xf64, #MAT_C_D>
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_block_matmul.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_block_matmul.mlir
index e47ac46597b77a..464de9c8a2c3a6 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_block_matmul.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_block_matmul.mlir
@@ -10,7 +10,7 @@
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
-// DEFINE: %{run_opts} = -e entry -entry-point-result=void
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
//
@@ -45,7 +45,6 @@
map = ( i, j ) -> (i : dense, j : compressed)
}>
-
#BSR = #sparse_tensor.encoding<{
map = ( i, j ) ->
( i floordiv 2 : dense,
@@ -65,67 +64,66 @@
module {
-func.func @mul(%arg0: tensor<4x8xf64>,
- %arg1: tensor<4x8xf64, #BSR>) -> tensor<4x4xf64> {
- %out = arith.constant dense<0.0> : tensor<4x4xf64>
- %0 = linalg.generic #trait_mul
- ins(%arg0, %arg1: tensor<4x8xf64>, tensor<4x8xf64, #BSR>)
- outs(%out: tensor<4x4xf64>) {
- ^bb(%x: f64, %y : f64, %z : f64):
- %1 = arith.mulf %x, %y : f64
- %2 = arith.addf %1, %z : f64
- linalg.yield %2 : f64
- } -> tensor<4x4xf64>
- return %0 : tensor<4x4xf64>
-}
-
-func.func @mul_24(%arg0: tensor<4x8xf64>,
- %arg1: tensor<4x8xf64, #NV_24>) -> tensor<4x4xf64> {
- %out = arith.constant dense<0.0> : tensor<4x4xf64>
- %0 = linalg.generic #trait_mul
- ins(%arg0, %arg1: tensor<4x8xf64>, tensor<4x8xf64, #NV_24>)
- outs(%out: tensor<4x4xf64>) {
- ^bb(%x: f64, %y : f64, %z : f64):
- %1 = arith.mulf %x, %y : f64
- %2 = arith.addf %1, %z : f64
- linalg.yield %2 : f64
- } -> tensor<4x4xf64>
- return %0 : tensor<4x4xf64>
-}
+ func.func @mul(%arg0: tensor<4x8xf64>,
+ %arg1: tensor<4x8xf64, #BSR>) -> tensor<4x4xf64> {
+ %out = arith.constant dense<0.0> : tensor<4x4xf64>
+ %0 = linalg.generic #trait_mul
+ ins(%arg0, %arg1: tensor<4x8xf64>, tensor<4x8xf64, #BSR>)
+ outs(%out: tensor<4x4xf64>) {
+ ^bb(%x: f64, %y : f64, %z : f64):
+ %1 = arith.mulf %x, %y : f64
+ %2 = arith.addf %1, %z : f64
+ linalg.yield %2 : f64
+ } -> tensor<4x4xf64>
+ return %0 : tensor<4x4xf64>
+ }
-func.func @mul_csr_bsr(%arg0: tensor<4x8xf64, #CSR>,
- %arg1: tensor<4x8xf64, #BSR>) -> tensor<4x4xf64> {
- %out = arith.constant dense<0.0> : tensor<4x4xf64>
- %0 = linalg.generic #trait_mul
- ins(%arg0, %arg1: tensor<4x8xf64, #CSR>, tensor<4x8xf64, #BSR>)
- outs(%out: tensor<4x4xf64>) {
- ^bb(%x: f64, %y : f64, %z : f64):
- %1 = arith.mulf %x, %y : f64
- %2 = arith.addf %1, %z : f64
- linalg.yield %2 : f64
- } -> tensor<4x4xf64>
- return %0 : tensor<4x4xf64>
-}
+ func.func @mul_24(%arg0: tensor<4x8xf64>,
+ %arg1: tensor<4x8xf64, #NV_24>) -> tensor<4x4xf64> {
+ %out = arith.constant dense<0.0> : tensor<4x4xf64>
+ %0 = linalg.generic #trait_mul
+ ins(%arg0, %arg1: tensor<4x8xf64>, tensor<4x8xf64, #NV_24>)
+ outs(%out: tensor<4x4xf64>) {
+ ^bb(%x: f64, %y : f64, %z : f64):
+ %1 = arith.mulf %x, %y : f64
+ %2 = arith.addf %1, %z : f64
+ linalg.yield %2 : f64
+ } -> tensor<4x4xf64>
+ return %0 : tensor<4x4xf64>
+ }
-func.func @mul_dense(%arg0: tensor<4x8xf64>,
- %arg1: tensor<4x8xf64>) -> tensor<4x4xf64> {
- %out = arith.constant dense<0.0> : tensor<4x4xf64>
- %0 = linalg.generic #trait_mul
- ins(%arg0, %arg1: tensor<4x8xf64>, tensor<4x8xf64>)
- outs(%out: tensor<4x4xf64>) {
- ^bb(%x: f64, %y : f64, %z : f64):
- %1 = arith.mulf %x, %y : f64
- %2 = arith.addf %1, %z : f64
- linalg.yield %2 : f64
- } -> tensor<4x4xf64>
- return %0 : tensor<4x4xf64>
-}
+ func.func @mul_csr_bsr(%arg0: tensor<4x8xf64, #CSR>,
+ %arg1: tensor<4x8xf64, #BSR>) -> tensor<4x4xf64> {
+ %out = arith.constant dense<0.0> : tensor<4x4xf64>
+ %0 = linalg.generic #trait_mul
+ ins(%arg0, %arg1: tensor<4x8xf64, #CSR>, tensor<4x8xf64, #BSR>)
+ outs(%out: tensor<4x4xf64>) {
+ ^bb(%x: f64, %y : f64, %z : f64):
+ %1 = arith.mulf %x, %y : f64
+ %2 = arith.addf %1, %z : f64
+ linalg.yield %2 : f64
+ } -> tensor<4x4xf64>
+ return %0 : tensor<4x4xf64>
+ }
+ func.func @mul_dense(%arg0: tensor<4x8xf64>,
+ %arg1: tensor<4x8xf64>) -> tensor<4x4xf64> {
+ %out = arith.constant dense<0.0> : tensor<4x4xf64>
+ %0 = linalg.generic #trait_mul
+ ins(%arg0, %arg1: tensor<4x8xf64>, tensor<4x8xf64>)
+ outs(%out: tensor<4x4xf64>) {
+ ^bb(%x: f64, %y : f64, %z : f64):
+ %1 = arith.mulf %x, %y : f64
+ %2 = arith.addf %1, %z : f64
+ linalg.yield %2 : f64
+ } -> tensor<4x4xf64>
+ return %0 : tensor<4x4xf64>
+ }
//
- // Output utilities.
+ // Output utility.
//
- func.func @dumpf64(%arg0: tensor<4x4xf64>) {
+ func.func @dump_dense_f64(%arg0: tensor<4x4xf64>) {
%c0 = arith.constant 0 : index
%d0 = arith.constant -1.0 : f64
%0 = vector.transfer_read %arg0[%c0, %c0], %d0: tensor<4x4xf64>, vector<4x4xf64>
@@ -136,36 +134,32 @@ func.func @mul_dense(%arg0: tensor<4x8xf64>,
//
// Main driver.
//
- func.func @entry() {
+ func.func @main() {
%c0 = arith.constant 0 : index
- %c1 = arith.constant 1 : index
- %c2 = arith.constant 2 : index
-
%td = arith.constant dense<[[ 1.0, 2.0, 0.0, 0.0, 0.0, 0.0, 4.0, 5.0],
[ 6.0, 7.0, 0.0, 0.0, 0.0, 0.0, 10.0, 11.0],
[ 0.0, 0.0, 12.0, 13.0, 16.0, 17.0, 0.0, 0.0],
[ 0.0, 0.0, 18.0, 19.0, 22.0, 23.0, 0.0, 0.0]]> : tensor<4x8xf64>
-
- %2 = sparse_tensor.convert %td : tensor<4x8xf64> to tensor<4x8xf64, #BSR>
- %3 = sparse_tensor.convert %td : tensor<4x8xf64> to tensor<4x8xf64, #NV_24>
- %4 = sparse_tensor.convert %td : tensor<4x8xf64> to tensor<4x8xf64, #CSR>
+ %a = sparse_tensor.convert %td : tensor<4x8xf64> to tensor<4x8xf64, #BSR>
+ %b = sparse_tensor.convert %td : tensor<4x8xf64> to tensor<4x8xf64, #NV_24>
+ %c = sparse_tensor.convert %td : tensor<4x8xf64> to tensor<4x8xf64, #CSR>
%d = call @mul_dense(%td, %td)
: (tensor<4x8xf64>, tensor<4x8xf64>) -> tensor<4x4xf64>
- %s = call @mul(%td, %2)
+ %s = call @mul(%td, %a)
: (tensor<4x8xf64>, tensor<4x8xf64, #BSR>) -> tensor<4x4xf64>
- %s24 = call @mul_24(%td, %3)
+ %s24 = call @mul_24(%td, %b)
: (tensor<4x8xf64>, tensor<4x8xf64, #NV_24>) -> tensor<4x4xf64>
- %scsr = call @mul_csr_bsr(%4, %2)
+ %scsr = call @mul_csr_bsr(%c, %a)
: (tensor<4x8xf64, #CSR>, tensor<4x8xf64, #BSR>) -> tensor<4x4xf64>
// CHECK-COUNT-4: ( ( 46, 115, 0, 0 ), ( 115, 306, 0, 0 ), ( 0, 0, 858, 1206 ), ( 0, 0, 1206, 1698 ) )
- call @dumpf64(%d) : (tensor<4x4xf64>) -> ()
- call @dumpf64(%s) : (tensor<4x4xf64>) -> ()
- call @dumpf64(%s24) : (tensor<4x4xf64>) -> ()
- call @dumpf64(%scsr) : (tensor<4x4xf64>) -> ()
+ call @dump_dense_f64(%d) : (tensor<4x4xf64>) -> ()
+ call @dump_dense_f64(%s) : (tensor<4x4xf64>) -> ()
+ call @dump_dense_f64(%s24) : (tensor<4x4xf64>) -> ()
+ call @dump_dense_f64(%scsr) : (tensor<4x4xf64>) -> ()
return
}
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_complex32.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_complex32.mlir
index d97b1a93359517..9747da27f9e972 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_complex32.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_complex32.mlir
@@ -10,7 +10,7 @@
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
-// DEFINE: %{run_opts} = -e entry -entry-point-result=void
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
//
@@ -77,22 +77,8 @@ module {
return %0 : tensor<?xcomplex<f32>, #SparseVector>
}
- func.func @dump(%arg0: tensor<?xcomplex<f32>, #SparseVector>, %d: index) {
- %c0 = arith.constant 0 : index
- %c1 = arith.constant 1 : index
- %mem = sparse_tensor.values %arg0 : tensor<?xcomplex<f32>, #SparseVector> to memref<?xcomplex<f32>>
- scf.for %i = %c0 to %d step %c1 {
- %v = memref.load %mem[%i] : memref<?xcomplex<f32>>
- %real = complex.re %v : complex<f32>
- %imag = complex.im %v : complex<f32>
- vector.print %real : f32
- vector.print %imag : f32
- }
- return
- }
-
// Driver method to call and verify complex kernels.
- func.func @entry() {
+ func.func @main() {
// Setup sparse vectors.
%v1 = arith.constant sparse<
[ [0], [28], [31] ],
@@ -114,23 +100,26 @@ module {
//
// Verify the results.
//
- // CHECK: 511.13
- // CHECK-NEXT: 2
- // CHECK-NEXT: 1
- // CHECK-NEXT: 0
- // CHECK-NEXT: 5
- // CHECK-NEXT: 4
- // CHECK-NEXT: 8
- // CHECK-NEXT: 6
- // CHECK-NEXT: 6
- // CHECK-NEXT: 8
- // CHECK-NEXT: 15
- // CHECK-NEXT: 18
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 4
+ // CHECK-NEXT: dim = ( 32 )
+ // CHECK-NEXT: lvl = ( 32 )
+ // CHECK-NEXT: pos[0] : ( 0, 4,
+ // CHECK-NEXT: crd[0] : ( 0, 1, 28, 31,
+ // CHECK-NEXT: values : ( ( 511.13, 2 ), ( 1, 0 ), ( 5, 4 ), ( 8, 6 ),
+ // CHECK-NEXT: ----
+ //
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 2
+ // CHECK-NEXT: dim = ( 32 )
+ // CHECK-NEXT: lvl = ( 32 )
+ // CHECK-NEXT: pos[0] : ( 0, 2,
+ // CHECK-NEXT: crd[0] : ( 28, 31,
+ // CHECK-NEXT: values : ( ( 6, 8 ), ( 15, 18 ),
+ // CHECK-NEXT: ----
//
- %d1 = arith.constant 4 : index
- %d2 = arith.constant 2 : index
- call @dump(%0, %d1) : (tensor<?xcomplex<f32>, #SparseVector>, index) -> ()
- call @dump(%1, %d2) : (tensor<?xcomplex<f32>, #SparseVector>, index) -> ()
+ sparse_tensor.print %0 : tensor<?xcomplex<f32>, #SparseVector>
+ sparse_tensor.print %1 : tensor<?xcomplex<f32>, #SparseVector>
// Release the resources.
bufferization.dealloc_tensor %sv1 : tensor<?xcomplex<f32>, #SparseVector>
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_complex64.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_complex64.mlir
index 29008473d481ed..840895ffee3252 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_complex64.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_complex64.mlir
@@ -10,7 +10,7 @@
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
-// DEFINE: %{run_opts} = -e entry -entry-point-result=void
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
//
@@ -74,22 +74,8 @@ module {
return %0 : tensor<?xcomplex<f64>, #SparseVector>
}
- func.func @dump(%arg0: tensor<?xcomplex<f64>, #SparseVector>, %d: index) {
- %c0 = arith.constant 0 : index
- %c1 = arith.constant 1 : index
- %mem = sparse_tensor.values %arg0 : tensor<?xcomplex<f64>, #SparseVector> to memref<?xcomplex<f64>>
- scf.for %i = %c0 to %d step %c1 {
- %v = memref.load %mem[%i] : memref<?xcomplex<f64>>
- %real = complex.re %v : complex<f64>
- %imag = complex.im %v : complex<f64>
- vector.print %real : f64
- vector.print %imag : f64
- }
- return
- }
-
// Driver method to call and verify complex kernels.
- func.func @entry() {
+ func.func @main() {
// Setup sparse vectors.
%v1 = arith.constant sparse<
[ [0], [28], [31] ],
@@ -111,23 +97,26 @@ module {
//
// Verify the results.
//
- // CHECK: 511.13
- // CHECK-NEXT: 2
- // CHECK-NEXT: 1
- // CHECK-NEXT: 0
- // CHECK-NEXT: 5
- // CHECK-NEXT: 4
- // CHECK-NEXT: 8
- // CHECK-NEXT: 6
- // CHECK-NEXT: 6
- // CHECK-NEXT: 8
- // CHECK-NEXT: 15
- // CHECK-NEXT: 18
+ // CHECK: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 4
+ // CHECK-NEXT: dim = ( 32 )
+ // CHECK-NEXT: lvl = ( 32 )
+ // CHECK-NEXT: pos[0] : ( 0, 4, )
+ // CHECK-NEXT: crd[0] : ( 0, 1, 28, 31, )
+ // CHECK-NEXT: values : ( ( 511.13, 2 ), ( 1, 0 ), ( 5, 4 ), ( 8, 6 ), )
+ // CHECK-NEXT: ----
+ //
+ // CHECK-NEXT: ---- Sparse Tensor ----
+ // CHECK-NEXT: nse = 2
+ // CHECK-NEXT: dim = ( 32 )
+ // CHECK-NEXT: lvl = ( 32 )
+ // CHECK-NEXT: pos[0] : ( 0, 2, )
+ // CHECK-NEXT: crd[0] : ( 28, 31, )
+ // CHECK-NEXT: values : ( ( 6, 8 ), ( 15, 18 ), )
+ // CHECK-NEXT: ----
//
- %d1 = arith.constant 4 : index
- %d2 = arith.constant 2 : index
- call @dump(%0, %d1) : (tensor<?xcomplex<f64>, #SparseVector>, index) -> ()
- call @dump(%1, %d2) : (tensor<?xcomplex<f64>, #SparseVector>, index) -> ()
+ sparse_tensor.print %0 : tensor<?xcomplex<f64>, #SparseVector>
+ sparse_tensor.print %1 : tensor<?xcomplex<f64>, #SparseVector>
// Release the resources.
bufferization.dealloc_tensor %sv1 : tensor<?xcomplex<f64>, #SparseVector>
diff --git a/mlir/test/Integration/Dialect/SparseT...
[truncated]
|
PeimingLiu
approved these changes
Mar 5, 2024
yinying-lisa-li
approved these changes
Mar 5, 2024
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Continuing the efforts started in #83357